

Rethinking Deep Neural Network Ownership Verification: Embedding Passports to Defeat Ambiguity Attacks Lixin Fan¹, Kam Woh Ng^{1,2}, Chee Seng Chan² WeBank AI Lab¹, University of Malaya²

Conventional DNN Watermarking methods

• White-box Ownership Verification (Uchida et al. [1])

• Black-box Ownership Verification (Adi et al. [2])

Problem Statements

- 1. Protection on DNN is urgently needed
- 2. Existing watermarking approaches are vulnerable to ambiguity attack

Watermark Approach	Real Watermark	Fake Watermark	
White-box (Uchida et al. [1])	100% watermark detected	100% watermark detected	
Black-box (Adi et al. [2])	100% watermark detected	100% watermark detected	

Watermark detection rate for both real and fake watermarks

Our Solution

Passporting Layer

Embedding Passport

Contributions

- 1. Novel passport-based verification schemes to defeat ambiguity attack
- 2. One passport-protected DNN model will only have one unique signature
- 3. Fake passport or modified signature will paralyze the DNN model

Embedding Binary Signatures into γ of Passporting Layer

Sign Loss = $\sum_{i=1}^{C} \max(\gamma_0 - \gamma_i b_i, 0)$

 $\gamma_0 = 0.1$ $b: [-1 \ 1 \ ...]$

64 channels can embed 8 bytes signature

Experimental Results

Ambiguity attack	Inference Phase	
Fake ₁ (random passport)	Random guessi	
Fake ₂ (reverse- engineered passport)	Performance deterio (at best 70% on CIF/	
Fake ₃ (copied passport)	Performance Deta Signature Detect	

Ownership Verification Schemes

	Scheme 1	Scheme 2	Scheme 3
Need to distribute passport	Yes	Νο	Νο
Inference time	Up to 10%** more time	No extra time	No extra time
Training time	Up to 30%** more time	Up to 150%** more time	Up to 150%** more time
Black or White box Verification	White	White	Black & White

^transformed
(N,C,H,W) ReLU $X_{transformed} = \gamma * Xn_{ormed} + \beta$

Discussion

**Time increases are linearly depending on complexity of the network architecture