

Ferrari: Federated Feature Unlearning via Optimizing Feature Sensitivity

Hanlin Gu^{2*} Win Kent Ong^{1*} Chee Seng Chan¹ Lixin Fan² ¹Center of Image and Signal Processing, University of Malaya ²WeBank AI Lab, Shenzhen, China

Introduction – Federated Learning

Machine Learning algorithm enables multiple parties to collaboratively train a model

- Without sharing private data, only sharing trained weights
- Better data privacy protection, reducing the risk of privacy leakage

Introduction – Machine Unlearning

• Remove the influence of a subset of its training dataset from the trained neural network.

Introduction – Machine Unlearning

• PRIVACY REGULATION LAWS

- California Consumer Privacy Act (CCPA)
- General Data Protection Regulation (GDPR)
- Consumer Privacy Protection Act (CPPA)
- Secure the right to be forgotten

- REMOVE OUTDATED OR MISLABELLED TRAINING DATA
 - Improve model robustness

Motivation

- Federated Unlearning
 - Current works focus on isolated data points
 - Client, sample or class level unlearning
- Feature Unlearning
 - Impractical for Federated Learning due to participation of all client (all datasets).
 - Difficulty in evaluating the effectiveness of feature unlearning.
 - Conventional method compared to the retrained model without the target feature reduced model utility.

Contributions

- We define the Feature Sensitivity metric based on Lipschitz Continuity
- We proposed an effective **federated feature unlearning** framework
 - allowing clients to selectively unlearn specific features
 - without the participation of other clients
 - optimizing feature sensitivity locally
- We provide theoretical proof and extensive experimental results demonstrate the state-of-the-art utility and effectiveness of our proposed framework.

Lipschitz continuity quantifies the sensitivity of a function, by quantifying how function values change with respect to variations in the independent variable

Exist a non-negative Lipschitz constant

$$||f_{\theta}(x_{1}) - f_{\theta}(x_{2})||_{Y} = L_{f_{\theta}}||x_{1} - x_{2}||_{X}, \forall (x_{1}, x_{2}) \in X$$

Output

$$\sup_{x_{1}, x_{2} \in X, x_{1} \neq x_{2}} \frac{||f_{\theta}(x_{1}) - f_{\theta}(x_{2})||_{Y}}{||x_{1} - x_{2}||_{X}} \leq L_{f_{\theta}}$$

Bounded Rate of Change - Average rate of change of the function bounded by Lipschitz bound.

$$-L_{f_{\theta}} \le \frac{||f_{\theta}(x_1) - f_{\theta}(x_2)||_Y}{||x_1 - x_2||_X} \le L_{f_{\theta}}$$

Feature Sensitivity: $s = \frac{\|f(x) - f(\bar{x})\|}{\|(x) - (\bar{x})\|}$

$$s = \frac{\left\|f(x) - f(x+\delta)\right\|}{\left\|(x) - (x+\delta)\right\|}$$

$$s = \frac{\|f(x) - f(x + \delta)\|}{\|\delta\|}$$

x =

Intuition Sensitivity-Guided Optimization

Core Idea: Optimize Feature Sensitivity via Guided Lipschitz Bound

$$\mathcal{L} = \frac{\left\|f(x) - f(x + \delta)\right\|}{\left\|\delta\right\|}, (\mathsf{x}, \mathsf{y}) \in D_u$$

Feature Sensitivity as guided loss function to optimize the unlearn model θ^u via gradient descent

$$\theta^{u} \leftarrow \theta^{u} - \eta \cdot \nabla_{\theta^{u}}(\mathcal{L})$$
$$\nabla_{\theta^{u}}(\mathcal{L}) = \frac{\partial \mathcal{L}}{\partial \theta_{u}}$$

Federated Feature Unlearning Framework

Theoretical Analysis

- $\ell_1 = \min_{\|\delta_{\mathcal{F}}\| \geq C} \mathbb{E}_{(x,y) \in \mathcal{D}} \min_{\theta} \ell \big(f_{\theta}(x + \delta_{\mathcal{F}}), y \big)$
- $\ell_2 = \max_{\|\delta_{\mathcal{F}}\| \leq C} \mathbb{E}_{(x,y) \in \mathcal{D}} \min_{\theta} \ell \big(f_{\theta}(x + \delta_{\mathcal{F}}), y \big)$

Assumption 1. Assume $\ell_2 \leq \ell_1$

larger perturbations would naturally lead to greater utility loss Assumption 2. Suppose the federated model achieves zero training loss.

Theorem 1. If Assumption 1 and Assumption 2 hold, the utility loss of unlearned model obtained by Algorithm 1 is less than the utility loss with unlearning successfully, i.e.

 $\ell_u \le \ell_1, \tag{3.10}$

where $\ell_u = \mathbb{E}_{(x,y)\in\mathcal{D}}\ell(f_{\theta^u}(x), y)$

- $$\begin{split} \ell_{u} &\leq \min_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{(x,y) \in \mathcal{D}} \Big(\ell(f_{\theta}(x), y) + \lambda \mathbb{E}_{\|\delta_{\mathcal{F}}\| \geq \frac{1}{\lambda}} \frac{\|f_{\theta}(x) f_{\theta}(x + \delta_{\mathcal{F}})\|_{2}}{\|\delta_{\mathcal{F}}\|_{2}} \Big) \\ &\leq \min_{\theta \in \Theta^{*}} \mathbb{E}_{(x,y) \in \mathcal{D}} \Big(\ell(f_{\theta}(x), y) + \lambda \mathbb{E}_{\|\delta_{\mathcal{F}}\| \geq \frac{1}{\lambda}} \frac{\|f_{\theta}(x) f_{\theta}(x + \delta_{\mathcal{F}})\|_{2}}{\|\delta_{\mathcal{F}}\|_{2}} \Big) \end{split}$$
 - $\leq \min_{\theta \in \Theta^*} \mathbb{E}_{(x,y) \in \mathcal{D}} \mathbb{E}_{\|\delta_{\mathcal{F}}\| \geq \frac{1}{\lambda}} \|y f_{\theta^*}(x + \delta_{\mathcal{F}})\|_2$
 - $\leq \mathbb{E}_{(x,y)\in\mathcal{D}}\mathbb{E}_{\|\delta_{\mathcal{F}}\|\geq\frac{1}{\lambda}}\min_{\theta\in\Theta^*}\|y-f_{\theta^*}(x+\delta_{\mathcal{F}})\|_2$
 - $= \mathbb{E}_{\|\delta_{\mathcal{F}}\| \geq \frac{1}{\lambda}} \mathbb{E}_{(x,y) \in \mathcal{D}} \min_{\theta \in \Theta^*} \|y f_{\theta^*}(x + \delta_{\mathcal{F}})\|_2$
 - $\leq \max_{\|\delta_{\mathcal{F}}\| \geq \frac{1}{\lambda}} \mathbb{E}_{(x,y) \in \mathcal{D}} \min_{\theta \in \mathbb{R}^d} \|y f_{\theta^*}(x + \delta_{\mathcal{F}})\|_2$
 - $\leq \max_{\|\delta_{\mathcal{F}}\| \leq C} \mathbb{E}_{(x,y) \in \mathcal{D}} \min_{\theta \in \mathbb{R}^d} \|y f_{\theta^*}(x + \delta_{\mathcal{F}})\|_2$

 $=\ell_2,$

Evaluation – Questions to be Answered

- 1. Effectiveness How effective is the proposed Federated Feature Unlearning framework in removing the target feature?
 - 1. Sensitive Feature Unlearning
 - 2. Backdoor Feature Unlearning
 - 3. Biased Feature Unlearning
- 2. Utility Can the unlearned model maintain its generalization capability on the test dataset?
- **3.** Efficiency How efficient is the unlearning process?

Result and Discussion

Effectiveness - Sensitive Feature Unlearning

Model Inversion Attack – Attack Success Rate

Scenario	Datasets	Unlearn						
		Feature	Baseline	Retrain	Fine-tune	FedCDP	FedRecovery	Ours
Sensitive	CelebA	Mouth	84.36 ±3.22	47.52 ± 1.04	77.43 ± 10.98	75.36 ±9.31	71.52 ± 6.07	51.28 ± 2.41
	Adult	Marriage	87.54 ± 13.89	49.28 ± 2.13	83.45 ± 8.44	72.83 ± 5.18	80.39 ± 10.68	49.58 ± 1.38
	Diabetes	Pregnancies	92.31 ±7.55	38.89 ± 2.52	88.46 ± 5.01	81.91 ± 8.17	78.27 ± 2.47	$\textbf{42.61} \pm \textbf{1.81}$

Feature Sensitivity

Scenario	Datasata	Unlearn						
	Datasets	Feature	Baseline	Retrain	Fine-tune	FedCDP	FedRecovery	Ours
Sensitive	CelebA	Mouth	$0.96 \pm 1.41 \times 10^{-2}$	$0.07 \pm 8.06 \times 10^{-4}$	$0.79 \pm 2.05 \times 10^{-2}$	$0.93 \pm 2.87 \times 10^{-2}$	$0.91 \pm 3.41 \times 10^{-2}$	0.09 ± 3.04 ×10 ⁻⁴
	Adult	Marriage	$1.31 \pm 1.53 \times 10^{-2}$	$0.02 \pm 6.47 \times 10^{-4}$	$0.94 \pm 6.81 \times 10^{-2}$	$1.07 \pm 7.43 \times 10^{-2}$	$1.14 \pm 2.57 \times 10^{-2}$	0.05 ±1.72×10 ⁻⁴
	Diabetes	Pregnancies	$1.52 \pm 0.91 \times 10^{-2}$	$0.05 \pm 5.07 \times 10^{-4}$	$0.96 \pm 1.28 \times 10^{-2}$	$1.23 \pm 3.82 \times 10^{-2}$	$0.83 \pm 5.08 \times 10^{-2}$	$0.07 \pm 1.07 \times 10^{-4}$

Result and Discussion Effectiveness - Sensitive Feature Unlearning

Model Inversion Attack – Reconstructed Images

Target

Retrain

Ours

"Mouth" feature remain unreconstructed

Result and Discussion Effectiveness - Backdoor Feature Unlearning

Scenarios	Datasets	Unlearn Feature		Accuracy (%)						
				Baseline	Retrain	Fine-tune	FedCDP	RedRecovery	Ours	
	MNIST		\mathcal{D}_r	95.65 ±1.39	97.19 ±2.49	96.16 ±0.37	65.82 ± 6.85	40.81 ±4.31	95.93 ±0.45	
			\mathcal{D}_u	97.43 ± 3.69	0.00 ± 0.00	72.64 ± 0.24	69.37 ±0.83	53.72 ± 3.14	0.11 ±0.01	
		-	\mathcal{D}_r	91.07 ± 0.54	93.85 ± 1.08	94.36 ±1.98	68.46 ±3.39	42.93 ± 2.50	92.83 ±0.61	
	FIVINISI		\mathcal{D}_u	94.51 ±6.29	0.00 ± 0.00	43.91 ±0.28	72.19 ±0.49	48.15 ± 4.37	0.90 ± 0.03	
	CIFAR-10	-	\mathcal{D}_r	87.63 ± 1.16	91.12 ± 1.60	92.02 ±3.15	54.91 ±6.91	27.49 ± 4.96	89.91 ±0.95	
			\mathcal{D}_u	95.05 ± 2.30	0.00 ± 0.00	88.44 ± 0.92	62.75 ±5.07	49.26 ± 2.23	0.29 ± 0.04	
Backdoor	CIFAR-20	Backdoor	\mathcal{D}_r	75.06 ± 6.41	81.91 ±4.68	82.67 ±1.32	55.67 ±6.35	23.76 ± 2.17	78.29 ± 3.12	
Dackuoor		pattern	\mathcal{D}_u	94.21 ±4.11	0.00 ± 0.00	86.53 ± 1.47	50.17 ±9.11	50.38 ± 4.25	$\textbf{0.78} \pm \textbf{0.08}$	
	CIFAR-100	-	\mathcal{D}_r	54.14 ± 3.96	73.54 ± 5.70	73.66 ±6.57	34.62 ±2.24	15.62 ± 7.78	69.57 ±3.81	
			\mathcal{D}_u	88.98 ± 6.63	0.00 ± 0.00	65.38 ± 4.76	57.29 ±3.62	46.17 ± 9.25	0.15 ± 0.01	
	Adult	-	\mathcal{D}_r	75.12 ± 1.09	81.55 ±2.31	76.51 ±3.59	38.17 ±3.05	45.19 ± 5.75	74.95 ± 1.54	
	Adult		\mathcal{D}_u	95.88 ±0.59	0.00 ± 0.00	89.07 ±1.38	41.93 ±2.75	31.94 ± 6.79	3.51 ±1.16	
	Diabetes		\mathcal{D}_r	75.67 ± 1.73	79.57 ±1.25	78.58 ± 2.39	43.76 ±4.91	37.14 ± 2.74	73.38 ± 1.93	
			\mathcal{D}_u	97.29 ± 0.91	0.00 ± 0.00	82.19 ± 1.87	54.48 ± 6.71	59.32 ± 5.29	5.84 ± 0.47	

Result and Discussion Effectiveness - Backdoor Feature Unlearning

Result and Discussion Effectiveness - Biased Feature Unlearning

Scenarios		Unlearn Feature		Accuracy (%) \approx						
	Datasets			Baseline	Retrain	Fine-tune	FedCDP	RedRecovery	Ours	
	CMNIST	Digit	\mathcal{D}_r	64.94 ± 7.88	98.76 ±3.65	67.15 ± 2.60	25.85 ± 1.58	23.92 ± 1.08	84.31 ±2.63	
			\mathcal{D}_u	98.88 ± 4.90	98.44 ± 1.90	97.95 ± 1.13	30.17 ± 4.69	27.64 ± 9.37	84.62 ± 3.59	
	CMNIST	Background	\mathcal{D}_r	61.76 ±5.31	99.05 ± 4.97	70.57 ± 0.92	19.24 ± 1.87	24.71 ±2.93	87.98 ±1.85	
			\mathcal{D}_u	98.27 ± 2.85	98.39 ± 1.83	96.06 ± 2.08	32.67 ± 5.72	35.59 ± 5.08	87.21 ± 0.84	
Pieced	CelebA	Mouth	\mathcal{D}_r	79.46 ± 2.09	96.47 ±6.15	84.45 ± 1.48	14.29 ± 0.81	16.34 ± 3.43	94.18 ± 3.08	
Diaseu			\mathcal{D}_u	96.38 ± 3.87	96.11 ±2.17	94.23 ± 0.66	21.58 ± 3.48	25.72 ± 8.02	94.79 ±1.48	
	Adult	Marriage	\mathcal{D}_r	64.68 ± 3.73	80.02 ± 1.49	68.28 ± 3.63	36.19 ± 5.69	42.86 ± 4.28	79.68 ±1.26	
			\mathcal{D}_u	87.48 ± 1.93	80.57 ± 2.08	87.06 ± 2.85	56.28 ± 3.75	28.73 ± 1.85	79.76 ± 0.63	
	Diabetes	Pregnancies	\mathcal{D}_r	57.46 ± 3.36	78.35 ± 3.53	63.76 ± 2.07	25.77 ± 1.58	48.93 ± 5.64	71.25 ± 1.33	
			\mathcal{D}_u	73.42 ± 1.68	77.57 ± 2.51	70.56 ± 3.43	40.73 ± 2.95	35.28 ± 4.71	72.84 ± 2.05	

Result and Discussion Effectiveness - Biased Feature Unlearning

CMNIST(Background)

CelebA

Result and Discussion

Utility

G	Datasets	Unlearn						
Scenarios		Feature	Baseline	Retrain	Fine-tune	FedCDP	RedRecovery	Ours
	CelebA	Mouth	94.87 ±1.38	79.46 ± 2.32	62.79 ± 1.62	34.03 ± 4.20	29.78 ± 6.69	92.26 ±1.73
Sensitive	Adult	Marriage	82.45 ± 2.59	65.27 ± 0.58	61.02 ± 1.05	30.19 ± 1.62	27.89 ± 3.71	81.02 ± 0.58
	Diabetes	Pregnancies	82.11 ± 0.49	64.19 ± 0.72	59.57 ± 0.68	36.71 ± 4.56	17.56 ± 2.32	$\textbf{79.53} \pm \textbf{0.79}$
	MNIST		94.75 ± 4.88	96.23 ±0.16	96.85 ± 0.91	65.31 ±4.39	40.52 ± 7.38	95.83 ± 1.14
	FMNIST		90.68 ± 2.19	92.98 ± 0.75	93.52 ± 1.63	67.62 ± 0.81	42.24 ± 4.45	92.61 ± 1.57
	CIFAR-10	Backdoor	87.55 ± 3.71	90.92 ± 1.83	91.23 ± 0.44	53.98 ± 2.17	27.16 ± 9.68	89.52 ± 2.18
Backdoor	CIFAR-20	Pixel	74.47 ± 2.38	81.61 ± 1.75	82.52 ± 0.69	54.76 ± 0.98	23.02 ± 3.11	78.34 ± 2.35
	CIFAR-100	Pattern	54.13 ± 7.62	73.12 ± 1.54	73.59 ± 1.66	34.30 ± 0.42	15.21 ± 5.83	69.30 ± 2.27
	Adult		77.51 ± 0.94	80.38 ± 1.92	81.75 ± 3.16	42.57 ± 2.38	43.86 ± 4.55	79.73 ± 1.46
	Diabetes		75.13 ± 1.69	79.04 ± 0.73	80.53 ± 1.59	48.29 ± 5.35	40.83 ± 3.65	79.57 ± 0.82
	CMNIST	Digit	81.72 ±3.41	98.49 ± 1.46	82.54 ± 0.78	27.56 ± 1.71	25.05 ± 5.09	83.85 ± 1.63
Biased	CMNIST	Background	80.12 ± 2.18	98.70 ± 1.81	83.35 ± 1.53	25.96 ± 2.29	28.15 ± 3.05	86.03 ± 1.36
	CelebA	Mouth	87.35 ± 4.07	95.87 ± 1.52	88.93 ± 2.65	16.98 ± 0.23	20.19 ± 7.21	94.62 ± 2.49
	Adult	Marriage	76.08 ± 2.79	80.47 ± 1.73	77.24 ± 2.24	46.35 ± 3.72	35.69 ± 2.56	81.22 ± 1.45
	Diabetes	Pregnancies	65.48 ± 3.07	77.93 ± 2.51	67.13 ± 2.78	38.25 ± 2.28	45.11 ± 3.18	$\textbf{72.04} \pm \textbf{1.39}$

Result and Discussion Time Efficiency

Conclusion

- To best of our knowledge, this is the first work to achieve feature unlearning within Federated Learning settings (Federated Feature Unlearning)
- The proposed Federated Feature Unlearning framework effectively achieves feature unlearning via the proposed Sensitivity-Guided Optimization algorithm.
- Theoretical analysis and experimental results, both quantitative and qualitatively.
- Proposed Federated Feature Unlearning framework proven to be effective in unlearning:
 - <u>Sensitive</u> Feature
 - <u>Backdoor</u> Feature
 - <u>Biased</u> Feature
- Practical Federated Feature Unlearning Framework without participation of all clients, only participation of unlearn client is needed.