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Introduction – Federated Learning

Machine Learning algorithm enables multiple parties to collaboratively train a model
◦ Without sharing private data, only sharing trained weights
◦ Better data privacy protection, reducing the risk of privacy leakage



Introduction – Machine Unlearning
• Remove the influence of a subset of its training dataset from the trained neural network.
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Introduction – Machine Unlearning
• P R I VA C Y  R E G U L AT I O N  L AW S

• California Consumer Privacy Act (CCPA)
• General Data Protection Regulation (GDPR)
• Consumer Privacy Protection Act (CPPA)
• Secure the right to be forgotten

• R E M O V E  O U T D AT E D  O R  M I S L A B E L L E D  T R A I N I N G  D ATA
• Improve model robustness



Motivation
• Federated Unlearning
• Current works focus on isolated data points 
• Client, sample or class level unlearning

• Feature Unlearning
• Impractical for Federated Learning due to participation of all client (all 

datasets).
• Difficulty in evaluating the effectiveness of feature unlearning.
• Conventional method compared to the retrained model without the target feature reduced model 

utility.



Contributions
• We define the Feature Sensitivity metric based on Lipschitz Continuity

•We proposed an effective federated feature unlearning framework
• allowing clients to selectively unlearn specific features
•without the participation of other clients
• optimizing feature sensitivity locally

•We provide theoretical proof and extensive experimental results
demonstrate the state-of-the-art utility and effectiveness of our proposed
framework.



Lipschitz Continuity
Lipschitz continuity quantifies the sensitivity of a function, by quantifying how function values 
change with respect to variations in the independent variable

Exist a non-negative Lipschitz constant

Bounded Rate of Change - Average rate of change of the function 
bounded by Lipschitz bound. 
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Feature Sensitivity
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Intuition Sensitivity-Guided Optimization
Core Idea: Optimize Feature Sensitivity via Guided 

Lipschitz Bound 
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Feature Sensitivity as guided loss function to optimize the 
unlearn model 𝜃( via gradient descent
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Federated Feature Unlearning Framework
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Theoretical Analysis 



Evaluation – Questions to be Answered
1. Effectiveness – How effective is the proposed Federated Feature Unlearning framework in 

removing the target feature?
1. Sensitive Feature Unlearning
2. Backdoor Feature Unlearning
3. Biased Feature Unlearning

2. Utility – Can the unlearned model maintain its generalization capability on the test dataset?

3. Efficiency – How efficient is the unlearning process?



Result and Discussion
Effectiveness - Sensitive Feature Unlearning 
Model Inversion Attack – Attack Success Rate

Feature Sensitivity



Result and Discussion
Effectiveness - Sensitive Feature Unlearning 
Model Inversion Attack – Reconstructed Images

“Mouth” feature remain 
unreconstructed 



Result and Discussion
Effectiveness - Backdoor Feature Unlearning 



Result and Discussion
Effectiveness - Backdoor Feature Unlearning 



Result and Discussion
Effectiveness - Biased Feature Unlearning 
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Result and Discussion
Effectiveness - Biased Feature Unlearning 



Result and Discussion
Utility



Result and Discussion
Time Efficiency



Conclusion
• To best of our knowledge, this is the first work to achieve feature unlearning within Federated
Learning settings (Federated Feature Unlearning)

• The proposed Federated Feature Unlearning framework effectively achieves feature unlearning
via the proposed Sensitivity-Guided Optimization algorithm.

• Theoretical analysis and experimental results, both quantitative and qualitatively.

• Proposed Federated Feature Unlearning framework proven to be effective in unlearning:
• Sensitive Feature
• Backdoor Feature
• Biased Feature

• Practical Federated Feature Unlearning Framework without participation of all clients, only
participation of unlearn client is needed.


