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Abstract—With substantial amount of time, resources and human (team) efforts invested to explore and develop successful deep

neural networks (DNN), there emerges an urgent need to protect these inventions from being illegally copied, redistributed, or abused

without respecting the intellectual properties of legitimate owners. Following recent progresses along this line, we investigate a number

of watermark-based DNN ownership verification methods in the face of ambiguity attacks, which aim to cast doubts on the ownership

verification by forging counterfeit watermarks. It is shown that ambiguity attacks pose serious threats to existing DNN watermarking

methods. As remedies to the above-mentioned loophole, this paper proposes novel passport-based DNN ownership verification

schemes which are both robust to network modifications and resilient to ambiguity attacks. The gist of embedding digital passports is to

design and train DNN models in a way such that, the DNN inference performance of an original task will be significantly deteriorated

due to forged passports. In other words, genuine passports are not only verified by looking for the predefined signatures, but also

reasserted by the unyielding DNN model inference performances. Extensive experimental results justify the effectiveness of the

proposed passport-based DNN ownership verification schemes. Code is available at https://github.com/kamwoh/DeepIPR

Index Terms—Deep model protection, model ownership verification, intellectual property protection, model security, deep learning
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1 INTRODUCTION

PROTECTION of Intellectual Property Rights (IPR) has always
been an issue, but has taken on newmeaning and impor-

tance in the digital age. For instance, there is an urgent need to
protect invented deep neural networks (DNN) models from
being illegally copied, redistributed or abused (i.e., intellec-
tual property infringement) as deep learning has revolu-
tionized many tasks such as machine translation, speech
recognition, face recognition, and photo-realistic image gener-
ation. As DNN models, e.g., pretrained language models are
becoming extremely computationally complex and training
data hungry, building a successful DNN is not a trivial task,
which usually requires substantial investments on expertise,
time and resources.

Recently, digital watermarking - a technology often used to
protect copyright of multimedia data was adopted to provide
such an IP protection, by embedding watermarks into DNN
models during the training stage. Subsequently, ownerships

of these inventions are verified by the detection of the embed-
ded watermarks, which are supposed to be robust to multiple
types ofmodifications such asmodel fine-tuning, model prun-
ing and watermark overwriting [1], [2], [3], [4]. Generally,
these approaches can be broadly categorized into two schools:
a) the feature-based methods that embed designated water-
marks into the DNNweights by imposing additional regulari-
zation terms [1], [3], [5]; and b) the trigger-set based methods
that rely on adversarial training samples with specific labels
(i.e., backdoor trigger sets) [2], [4]. Watermarks embedded
with either of these methods have successfully demonstrated
robustness against removal attackswhich involvemodifications
of the DNN weights such as fine-tuning or pruning. However,
our studies disclose the existence and effectiveness of ambigu-
ity attacks which aim to cast doubt on the ownership verifica-
tion by forging additional watermarks1 for DNN models in
question (see Fig. 1). We also show that it is always possible to
create a forged watermark at minor computational cost where the
original training dataset is also not needed (Section 3).

As remedies to the above-mentioned loophole, this paper
proposes a novel passport-based strategy, which is fundamen-
tally different from the watermark-based approaches and
provide protection against the weakness of watermarks. Spe-
cifically, we propose tomodulate the inference performances of the
DNN model depending on the presented passports, i.e., the infer-
ence performance of a pre-trained DNN model will either
remain intact given the presence of valid passports, or be sig-
nificantly deteriorated due to either the modified or forged
passports. By taking advantage of the modulated DNNmodel
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1. Noted that watermark, signature and trigger set are used inter-
changeably. We would sometime describe watermark to include both
signature (could be a string) and trigger set (data that is to ”trigger” the
model to output designated labels).
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performance, which is an unique feature of the proposed pass-
port-based approach, one can develop ownership verification
schemes that are both robust to removal attacks and resilient
to ambiguity attacks at once (Section 4). Moreover, we intro-
duce a novel sign loss that is to embed binary signature into
the scale factors of a passport layer. The binary signature
embedded guarantee strong resilient to ambiguity attacks
(Section 4.3).

The contributions of our work are twofold:

� Weput forth a general formulation of DNNownership
verification schemes (Definition 1) to defeat both
removal attacks and ambiguity attacks. It is shown by
Proposition 1 that existing watermark-based schemes
are invertible processes and thus are volunerable to
ambiguity attacks. The feasibility of employing an
non-invertible process is then given by Proposition 2.

� Wepropose novel passport-based verification schemes
and demonstrate with extensive experiment results
that these schemes successfully defeat both removal
attacks and ambiguity attacks. Passport-embedded
DNN networks are designed in a way such that, the
DNN inference performance of an original task will be
significantly deteriorated due to forged passports. In
other words, genuine passports are not only verified
by looking for the predefined signatures, but also
reasserted by the unyielding DNN model inference
performances.

A preliminary version of this work was presented earlier
[6]. The present work extends the initial version in three
aspects. First, we complete a thorough investigation and
disclose the existence of ambiguity attacks that will cast
doubt on the existing watermark-based solutions. Second,
considerable new analyses and empirical studies are added
to the initial results. For instance, new experiments using
ImageNet are added in the study. Third, to further demon-
strate the ability of our proposed model, we proposed an
innovative way, i.e., embed sign of scale factors as signature
to guarantee strong resilient to ambiguity attacks.

2 RELATED WORK

Uchida et al. [1] was probably the first work that proposed
to embed watermarks into DNN models by imposing an

additional regularization term on the weights parameters. [2],
[7] proposed to embed watermarks in the classification
labels of adversarial examples in a trigger set, so that the
watermarks can be extracted remotely through a service
API without the need to access the network weights (i.e.,
black-box setting). Also in both black-box and white box set-
tings, [3], [5], [8], [9], [10], [11], [12] demonstrated how to
embed watermarks (or fingerprints) that are robust to vari-
ous types of attacks. In particular, it was shown that embed-
ded watermarks are in general robust to removal attacks that
modify network weights via fine-tuning or pruning. Water-
mark overwriting, on the other hand, is more problematic
since it aims to simultaneously embed a new watermark
and destroy the existing one. Although [5] demonstrated
robustness against overwriting attack, it did not resolve the
ambiguity resulted from the counterfeit watermark. Adi
et al. [2] also discussed how to deal with an adversary who
fine-tuned an already watermarked networks with new trig-
ger set images. Nevertheless, [2] required the new set of
images to be distinguishable from the true trigger set
images. This requirement is however often unfulfilled in
practice, and our experiment results show that none of
existing watermarking methods are able to deal with ambi-
guity attacks explored in this paper (see Section 3). For a
more comprehensive survey, please refer to [13].

In the context of digital image watermarking, [14], [15]
have studied ambiguity attacks that aim to create an ambigu-
ous situation in which a watermark is reverse-engineered
from an already watermarked image, by taking advantage
of the invertibility of forged watermarks [16]. It was argued
that robust watermarks do not necessarily imply the ability to estab-
lish ownership, unless non-invertible watermarking schemes are
employed (see Proposition 2 for our proposed solution).

In our work, we aim to protect a DNN model by embed-
ding a watermark that is unique and non-removable. Ambiguity
attacks aim to forge a counterfeit watermark by inserting the
new counterfeit watermark into the model while maintaining
the trained weights and the performance of the model.
Although the motivation of inserting newwatermark into the
model for ambiguity attack is very similar for watermark
overwriting i.e., try to cheat the verification process (see III in
Definition 1 and Fig. 2c), we would like to highlight that the
approaches taken by both attacks are fundamentally different:

Fig. 1. Two threat models considered in this work i.e., removal attack and ambiguity attack, and the proposed solution to defeat both attacks. (a)
Removal attack aims to remove or overwrite original watermark B, by modifying DNN model weights W to W 0 (marked red); (b) Ambiguity attack
aims to forge counterfeit watermarks (T0; s0) without modifying DNN model weights W (see Proposition 1 and Section 3.2); (c) A non-invertible verifi-
cation scheme is proposed to defeat ambiguity attacks, whereas the attacker Bob is unable to forge a new watermark that can pass both verification
process V and fidelity process F (see Definition 1 and Section 4.4).
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a)Overwriting attacks in [1], [5]modify networkweightsW to
embed new watermark; b) Ambiguity attacks do not need to
modify any trained network weights W , instead, new water-
marks are forged by an invert process to fool the verification
process. (see IV in Defintion 1 and Fig. 2d); c) Existing water-
marking methods are proved to be robust to overwriting
attacks [5] but are vulnerable to ambiguity attacks (see Propo-
sition 1 and Section 3.2).

3 RETHINKING DEEP NEURAL NETWORK

OWNERSHIP VERIFICATION

This section analyses and generalizes existing DNN water-
marking methods in the face of ambiguity attacks. We must
emphasize that the analysis mainly focuses on three aspects
i.e., fidelity, robustness and invertibility of the ownership veri-
fication schemes, and we refer readers to representative pre-
vious work [1], [2], [3], [4] for formulations and other
desired features of the entire watermark-based intellectual
property (IP) protection schemes.

3.1 Reformulation of DNN Ownership Verification
Schemes

Fig. 1 summarizes the application scenario and threatmodel of
DNNmodel ownership verification. Two types of threat mod-
els are considered in our work, i.e., removal attack (Fig. 1a)
and ambiguity attack (Fig. 1b). A clear distinction between
these two attacks lies in the fact that attackers have to modify

DNNmodelweights to remove or overwrite embeddedwater-
marks, while forged watermarks can be created with DNN
model weights being kept intact for ambiguity attack. Fig. 1c
illustrates an ambiguous situation in which rightful owner-
ships cannot be uniquely resolved by existing watermarking
methods. This loophole is largely due to an intrinsic weakness
of the watermark-based methods i.e., invertibility, which can
be resolved by employing the passport-based approach. For-
mally, the definition of DNN model ownership verification
schemes is generalized as follows.

Definition 1. A DNN model ownership verification scheme is a
tuple V ¼ ðE;F; V; IÞ of processes:

I) An embedding process E
�
Dr;T; s;N½��; L

� ¼ N½W;
T; s�, is a DNN learning process that takes training
dataDr ¼ fXr; yrg as inputs, and additionally together
with, either trigger set data T ¼ fXT ; yTg or signature
s, and outputs the model N½W;T; s� by minimizing a
given lossL. (see Fig. 2a)

Remark: the DNN architectures are pre-determined
byN½�� and, after the DNNweightsW are learned, either
the trigger set T or signatures s will be embedded and
can be verified by the verification process defined next.2

Fig. 2. Visual explanation for processes E;F; V; I defined in Definition 1.

2. Learning hyper-parameters such as learning rate and the type of
optimization methods are considered irrelevant to ownership verifica-
tions, and thus they are not included in the formulation.
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II) A fidelity evaluation process F
�
N½W; �; ��;Dt;Mt;

�f
� ¼ fTrue; Falseg is to evaluate whether or not the

discrepancy of model performances k is less than a pre-
defined threshold i.e., jMðN½W; �; ��;DtÞ �Mtj � �f ,
in whichMðN½W; �; ��;DtÞ is the DNN inference per-
formance tested against a set of test data Dt where
Mt is the target inference performance. (see Fig. 2b)

Remark: it is often expected that a well-behaved
embedding process will not introduce a significant
inference performance change that is greater than a
predefined threshold �f . Nevertheless, this fidelity con-
dition remains to be verified for DNN models under
either removal attacks or ambiguity attacks.

III) A verification process V ðN½W; �; ��;T; s; �sÞ ¼ fTrue;
Falseg checks whether or not the expected signature s or
trigger set T is successfully verified for a given DNN
modelN½W; �; ��. (see Fig. 2c)

Remark: for feature-based schemes, V involves the
detection of embedded signatures s ¼ fP;Bgwith a false
detection rate that is lesser than a predefined threshold �s.
Specifically, the detection boils down to check whether
the Hamming distance Hðfe;BÞ is below a Hamming
radius �s, in which feðW;PÞ ¼ PW. V = True if H �
�s and False otherwise.

Remark: for trigger-set based schemes, V first
invokes a DNN inference process that takes trigger set
samplesXT as inputs, and then it checks whether the pre-
diction fðW;XT Þ produces the designated labels yT with
a false detection rate lesser than a threshold �t. V = True
if
P

i 1ðfðW;X
ðiÞ
T Þ 6¼ y

ðiÞ
T Þ � �s and False otherwise in

which 1ðÞ is an indicator function.
IV) An invert process IðN½W;T; s�Þ ¼ N½W;T0; s0� exists

and constitutes a successful ambiguity attack (see
Fig. 2d), if a set of new trigger set T0 and/or signature
s0 can be reverse-engineered for a given DNN model:
a) the forged T0; s0 can be successfully verified with

respect to the given DNN weights W i.e.,
V ðIðN½W;T; s�Þ;T0; s0; �sÞ ¼ True;

b) the fidelity evaluation outcome F
�
N½W; �; ��;Dt;

Mt; �f
�
defined in Definition 1.II remains True.

Remark: this condition plays an indispensable
role in designing the non-invertible verification
schemes to defeat ambiguity attacks (see Section 4.4).

V) If at least one invert process exists for a DNN verifica-
tion scheme V, then the scheme is called an invertible
scheme and denoted by VI ¼ ðE;F; V; I 6¼ ;Þ; other-
wise, the scheme is called non-invertible and denoted
by V; ¼ ðE;F; V; ;Þ.

The definition as such is abstract and can be instantiated
by concrete implementations of processes and functions
(All notations are summarized in Table 1). For instance, the
following combined loss function (Eq. (1)) generalizes loss
functions adopted by both the feature-based and trigger-set
based watermarking methods

L ¼ Lc

�
fðW;XrÞ; yr

�þ �tLc

�
fðW;XT Þ; yT

�þ �rRðW; sÞ;
(1)

in which �t; �r are the relative weight hyper-parameters,
fðW;X�Þ are the network predictions with inputs Xr or XT .

Lc is the loss function like cross-entropy that penalizes dis-
crepancies between the predictions and the target labels yr
or yT . Signature s ¼ fP;Bg consists of signature extraction
parameter P and signature string B. The regularization
terms could be either R ¼ LcðsðW;PÞ;BÞ as in [1] in which
sðÞ is sigmoid function or R ¼ MSEðB� PWÞ as in [3] in
which MSE is mean square error.

It must be noted that, for those DNN models that will be
used for classification tasks, their inference performance
MðN½W; �; ��;DtÞ ¼ Lc

�
fðW;XtÞ; yt

�
tested against a dataset

Dt ¼ fXt; ytg is independent of either the embedded signa-
ture s or trigger set T. It is this independence that induces
an invertible process for existing watermark-based methods
as disclosed by following proposition.

Proposition 1. (Invertible process) propmainclaim For a
DNN ownership verification scheme V as in Definition 1, if the
fidelity process F ðÞ is independent of either the signature s ¼
fP;Bg or trigger set T, then there always exists an invertible
process IðÞ i.e., the scheme is invertible VI ¼ ðE;F; V; I 6¼ ;ÞÞ.

TABLE 1
All Notations

Notation Description

E Embedding process. This process will train a
DNNmodel and embed watermarks into the
DNNmodel.

F Fidelity evaluation process.
V Verification process. E½V � is the expected

(average) detection rate of verification results.
I Invert process.
Lc Loss function such as cross-entropy.
s ¼ fP;Bg s. Signature to be embedded, usually include a

signature extraction parameter P and binary
signature string B. P. In feature-based watermark
methods, P is a signature extraction parameter to
recover hidden signature string B from a
watermarked DNN. In our passport-based
method, P is passport that is to compute signature
string B and to modulate the passport layer scale
g and bias b (see Fig. 6a). B. A binary signature
string where B ¼ f�1; 1gC .

T Trigger set data including inputs XT and
designated labels yT .

D A dataset including inputs X and labels y.
N½�� An initial DNNmodel with architecture specified

and weights to be trained.
N½W� A trained DNNmodel that has trained weightW.
N½W; s� A trained DNNmodel that has trained weightW

embedded with signature B, that is extracted by
using parameter P. s consists of both P and B.

N½W;T� A trained DNNmodel that has trained weightW
embedded with trigger set T.

N½W;T; s� A trained DNNmodel that has trained weightW,
embedded with watermarks (which are trigger
set T and signature s).

M The performance of a model.
Mt Target inference performance.
�f A predefined threshold for discrepancy

measurement.
�s A predefined Hamming radius for signature

string measurement.
�t A predefined threshold for false detection rate of

trigger set samples.
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Proof. for a trained network N½Ŵ; T; s� with signature s
and/or trigger set T embedded, the invert process IðÞ can
be constructed with the following steps:

1) maintain the given weights Ŵ unchanged;
2) forge the feature-based watermarks s0 ¼ fP0;B0g by

minimizing the distance P0 ¼ argminP0HðfeðŴ;
P 0Þ;B0Þ.

Remark: attackers have to takeB0 6¼ B, and in case
that the watermark signature B is unknown, attack-
ers may assign random signature B0, whose the
probability of collision B0 ¼ B is then exponentially
low.

3) forge the trigger set T 0 ¼ fX0T ; y0Tg by minimizing
the (cross-entropy) loss X0T ¼ argminX0

T
Lc

�
fðŴ;

X0T Þ; y0T
�
between the prediction and the target

labels.
4) fidelity evaluation is fulfilled i.e., jMðN½W; �; ��;

DtÞ �Mtj � �f since model performance is inde-
pendent to both the forged signatures and trigger
set, thus remain unchanged.

Remark: during the minimization of detection error,
there is no need of training data which is not used in step 2
at all;

Remark: during the minimization of detection error,
the computational cost is minor since the dimensionality of
the optimization parameters i.e., fP0;B0g or X0T ; y

0
T is

order of magnitude smaller, as compared to the number
of DNN weights Ŵ. tu

3.2 Threat Model: Conventional Watermark-Based
DNN in the Face of Ambiguity Attacks

In this section, we investigate a number of popular water-
mark-based DNN ownership verification methods [1], [2] in
the face of ambiguity attacks, which aim to cast doubts on
ownership verification by forging counterfeit watermarks.

3.2.1 Ambiguity Attacks on Feature-Based Method [1]

Herein, one may train a DNNmodel embedded with water-
marks as described in [1], then the ambiguity attacks are
launched as follows. The loss function adopted in [1] uses
the following binary cross entropy for the embedding regu-
larizer:

RðWÞ ¼ �
XC
j¼1
ðbjlog ðyjÞ þ ð1� bjÞlog ð1� yjÞÞ; (2)

in which yj ¼ sðPi PjiwiÞ is the extracted feature with sð�Þ
the sigmoid function. In order to forge watermark P for a
given signature B ¼ fb1; . . . ; bCg 2 f�1; 1gC and the weights
wi of the watermarked DNNmodel, the loss (Eq. (2)) is min-
imized with respect to the new binary signatures B0.

Following [1], we detect watermarks by comparing the
extracted binary strings w.r.t. the designated one by mea-
suring the successful detection rate. As summarized in
Table 2, for both real/fake watermarks, E(V) = 100%, and F
= True (since W remains unchanged). It is impossible to tell
the real from the counterfeit watermarks. The verification
scheme V is invertible. Even after the fine-tuning (a typical
removal attack), E(V) for both real and fake watermarks

remain 100 percent. It is still impossible to distinguish real
from counterfeit watermarks.

Note that since wi are fixed, we do not need to include
the original (cross-entropy) loss measured with the training
images, which is a constant during the optimization. This
simplicity allows the forging of Pji converge very rapidly.
Note that, the overall optimization took about only 50 itera-
tions in 50 seconds, which merely constitutes a minor frac-
tion (2.5 percent) of the training time for the original task.

Fig. 3a illustrates the distributions of counterfeit water-
marks Pji together with the original watermarks, which are
hardly distinguishable from each other. In terms of the
extracted features

P
i Pjiwi, their distributions are different

from the original watermarks, but it is still impossible to tell
the difference after thresholding for the purpose of owner-
ship verification. Finally, Fig. 3c illustrates that the distribu-
tion of Pji is not much affected by the fine-tuning process
which aims to modify the DNN weights for transfer learn-
ing purposes (see Table 2).

3.2.2 Ambiguity Attacks on Trigger-Set Based

Method [2]

One may follow [2] to train the DNN model with trigger set
images embedded as watermarks, and then the ambiguity
attacks are conducted as follows. In order to construct the
adversarial trigger set images by minimizing the cross-
entropy loss between the predicted labels and the target
labels, one may adopt a simple approach which adds train-
able noise components to randomly selected base images
using the following steps:

1) Randomly select a set of N base images Xb as shown
in Fig. 4a;

2) Make random noisy patterns of the same size Xn as
trainable parameters;

3) Use the summed components XT ¼ Xb þ hXn as the
trigger set images, in which h ¼ 0:04 to make the
noise component invisible;

4) Randomly assign trigger set labels yT ;
(5) Minimize the cross-entropy loss Lc

�
fðŴ;XT Þ; yT

�
w.

r.t. the trainable parameter Xn in which Xn ¼
argminXnLc.

Remark: DNN parameters Ŵ are fixed during the
optimization, and thus, the original training data is
not needed.

TABLE 2
Accuracy of the Classification TaskM and Detection Rate of
Real/Fake Embedded Watermarks E½V � (Both in %) With

Two Representative Watermark-Based DNN Methods [1], [2],
Before (Trained With CIFAR10) and After the DNN
Weights are Fine-Tuning for a Transfer Learning

Task (i.e., CIFAR100 and Caltech-101)

Trained with Fine-tuned with

AlexNet CIFAR10 CIFAR100 Caltech-101

Feature based
method [1]

M 90.97 64.25 74.08
E½V � 100/100 100/100 100/100

Trigger-set based
method [2]

M 91.03 65.20 75.06
E½V � 100/100 25.00/27.80 43.60/46.80
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Fig. 4c illustrates the final optimized XT . where all of
them are correctly classified as the assigned labels i.e., yT .
Visually, these forged trigger set images (Fig. 4c) are hardly
distinguishable from the original ones (Fig. 4a). In terms of
histogram distributions, they are indistinguishable too (see
Fig. 5). As shown in Table 2, both the trigger set and forged
images are 100 percent correctly labeled with assigned
adversarial labels. This indistinguishable situation casts
doubt on ownership verification by trigger set images alone.

After fine-tuned to other classification tasks, however,
the classification accuracies of both trigger set and forged
images deteriorated drastically yet the detection rate of
forged images is slightly better than that of the original trig-
ger set images. We ascribed this improvement to the invert
process, which optimizes Xn to increase the detection rate.
In terms of the computational cost, the overall optimization
requires only about 100 epochs of fake trigger set in 100 sec-
onds, which merely constitutes a minor fraction (5 percent)
of the training time for the original task.

As a summary, we found out that theoretically, as
proved by Proposition 1, one is able to construct forged
watermarks for any already watermarked networks. Empir-
ically, we tested the performances of two representative
DNN watermarking methods [1], [2], and Table 2 shows
that counterfeit watermarks can be forged for the given
DNN models with 100 percent detection rate, and 100 per-
cent fake trigger set images can be reconstructed as well in
the original task. Given that the detection accuracies for the
forged trigger set is slightly better than the original trigger
set after fine-tuning, the claim of the ownership is ambigu-
ous and cannot be resolved by neither feature-based nor
trigger-set based watermarking methods. Considering that
the computational cost to forge counterfeit watermarks is

minor, and that fake watermarks are successfully forged
without the need of original training data, we see ambiguity
attacks pose serious challenges to watermark-based IPR
protections.

As a whole, the ambiguity attacks against conventional
DNN watermarking methods are effective with minor
computational and without the need of original training
datasets. We ascribe this loophole to the crux that the loss of
the original task i.e., Lc

�
fðŴ;XrÞ; yr

�
is independent of the

forged watermarks. In the next section, we shall illustrate a
solution to defeat the ambiguity attacks.

4 EMBEDDING PASSPORTS FOR DNN OWNERSHIP

VERIFICATION

The main motivation of embedding digital passports is to
design and train DNN models in a way such that, their
inference performances of the original task (i.e., classifica-
tion accuracy) will be significantly deteriorated due to the
forged signatures. We shall illustrate next first how to imple-
ment the desired property by incorporating the so called
passport layers, followed by different ownership protection
schemes that exploit the embedded passports to effectively
defeat ambiguity attacks.

4.1 Passport Layers

In order to control the DNN model functionalities by the
embedded digital signatures i.e., passports, we proposed to
append after a convolution layer a passport layer, whose
scale factor g 2 ROC and bias shift term b 2 ROC are depen-
dent on both the convolution kernels Wp 2 ROC�IC�K�K (in
which OC is number of output channels, IC is number of
input channels, and K is kernel size), and the designated
passport P 2 RNP�IC�IS�IS (in which NP is number of pass-
ports and IS is size of image or feature map) as follows:

OðlÞðXpÞ ¼ gðlÞXðlÞp þ bðlÞ ¼ gðlÞðWðlÞ
p � XðlÞc Þ þ bðlÞ; (3)

Fig. 3. A comparison of the distributions of watermarks and extracted features.

Fig. 4. Sample of the trigger set images used in ambiguity attacks on trig-
ger-set based method in Section 3.2.2.

Fig. 5. Distribution of the real Xb and fake XT trigger set images. It shows
that the fake trigger set images are hardly distinguishable from the real
ones.
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gðlÞ ¼ AvgðWðlÞ
p � PðlÞg Þ; bðlÞ ¼ AvgðWðlÞ

p � PðlÞb Þ; (4)

in which � denotes the convolution operations, l is the layer
number, Xp 2 RN�IC�IS�IS is the input to the passport layer
and Xc 2 RN�IC�IS�IS is the input (with batch size of N) to
the convolution layer. AvgðÞ is the average pooling function
along the dimension of batch size, height and width andOðÞ
is the corresponding linear transformation of outputs, while
PðlÞg and P

ðlÞ
b are the passports used to derive scale factor gðlÞ

and bias term bðlÞ respectively. Fig. 6a delineates the archi-
tecture of digital passport layers used in a standard Conv-
Norm (such as Conv2d-BatchNorm) layer.

Remark: for DNN models trained with passport sðlÞe ¼
fPðlÞg ;P

ðlÞ
b g, their inference performances MðN½W; se�;Dt; stÞ

depend on the running time passports st i.e.,

MðN½W; se�;Dt; stÞ ¼ Mse ; if st ¼ se;
Mst ; otherwise:

�
(5)

If the genuine passport is not presented st 6¼ se, the running
time performanceMst is significantly deteriorated because
the corresponding scale factor g and bias terms b are calcu-
lated based on the wrong passports. For instance, as shown
in Fig. 6b, a proposed DNN model presented with valid
passports (green) will demonstrate almost identical accura-
cies as to the original DNN model (red). In contrast, the
same proposed DNN model presented with counterfeit
passports (blue), the accuracy will deteriorate to merely
about 10 percent only.

Remark: the gist of the proposed passport layer is to
enforce dependence between scale factor, bias terms and net-
work weights. As shown by the Proposition 2, it is this
dependence that validates the required non-invertibility to
defeat ambiguity.

Proposition 2. (Non-invertible process) propnoninvertclaim
A DNN ownership verification scheme V as in Definition 1 is
non-invertible, if

I) the fidelity process outcome F
�
N½W;T; s�;Dt;Mt; �f

�
depends either on the presented signature s or trigger
set T,

II) with forged passport st 6¼ se, the DNN inference per-
formanceMðN½W; se�;Dt; stÞ in (Eq. (5)) deteriorates
to the extent that the discrepancy is larger than the pre-
scribed threshold i.e., jMse �Mst j > �f .

Proof. Since using forged passports the DNNmodel perfor-
mance is significantly deteriorated such that jMse �
Mst j > �f , it immediately follows, from the definition of
invertible verification schemes V (see Definition 1.IV),
that the scheme in question is non-invertible. tu

4.2 Methods to Generate Passports

Public parameters of a passport protected DNN might be
easily plagiarized, then the plagiarizer has to deceive the
network with certain passports. The chance of success of
such an attacking strategy depends on the odds of correctly
guessing the secret passports. Fig. 7 illustrates three differ-
ent types of passports which have been investigated in our
work:

1) random patterns, whose elements are independently
randomly generated according to the uniform distri-
bution between [�1, 1].

2) one selected image is fed through a trained DNN
model with the same architecture, and the corre-
sponding feature maps are collected. Then the
selected image is used at the input layer and the corre-
sponding feature maps are used at other layers as
passports. We refer to passports generated as such
the fixed image passport.

3) a set of N3 selected images are fed to a trained DNN
model with the same architecture, and N correspond-
ing feature maps are collected at each layer. Among the
N options, only one is randomly selected as the pass-
port at each layer. Specifically, for a set of N images
being applied to a DNNmodel withL layers, there are
altogetherNL possible combinations of passports that
can be generated. This option should provide stronger
protection as it is very difficult for the attackers to pick
up the correct combinations of passports. We refer to

Fig. 6. (a) Passport layer and (b) Classification accuracies modulated by different passports in CIFAR10, e.g., given counterfeit passports, the DNN
models performance will be deteriorated instantaneously to fend off illegal usage.

3. N is number of selected images or feature maps.
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passports generated as such the randomly shuffled
image passports.

Since randomly shuffled passports allow strong protec-
tion and flexibility in the passport generation and distribu-
tion, we adopt this passport generation method for all the
experiments reported in this paper. Specifically, N ¼ 20
images are selected and fed to the DNN architectures that
are used in our experiments. Feature maps at those corre-
sponding convolution layers are then collected as possible
passports. Some example of the features maps selected as
the passports at different layers are illustrated in Fig. 8.
Note that, in order to enhance the justification of ownership,
one can furthermore select either personal identification pic-
tures or organization logos (see Fig. 7c) during the design-
ing of the fixed or random image passports. Also, it must be
noted that, using passports as proofs of ownership to stop
infringements is the last resort, only if the hidden parame-
ters are illegally disclosed or (partially) recovered. We
believe this juridical protection is often not necessary since
the proposed technological solution actually provides pro-
active, rather than reactive, IP protection of deep neural
networks.

4.3 Sign of Scale Factors as Signature

During learning the DNN, to further protect the DNN mod-
els ownership from insider threat (e.g., a former staff who
establish a new start-up business with all the resources cop-
ied from originator), one can enforce the scale factor g to
take either positive or negative signs (+/�) as designated,
so that it will form a unique signature string. This process is
done by adding the following sign loss regularization term
into the combined loss (Eq. (1))

RðP;BÞ ¼
XC
i¼1

maxða� gibi; 0Þ; (6)

in which the scale factors g are computed using passports
Pg by Eq. (3), B ¼ fb1; . . . ; bCg 2 f�1; 1gC consists of the des-
ignated binary bits for C convolution kernels, and a is a pos-
itive control parameter (0.1 by default unless stated
otherwise) to encourage the scale factors have magnitudes
greater than a.

It must be highlighted that the inclusion of sign loss
(Eq. (6)) enforces the scale factors g to take either positive or

negative values, and the signs enforced in this way remain
rather persistent against various adversarial attacks. This
feature explains the superior robustness of embedded pass-
ports against ambiguity attacks shown in Section 5.2.

4.4 Ownership Verification With Passports

Taking advantages of the proposed passport embedding
method, we design three ownership verification schemes
that are summarized in Figs. 9, 10 and 11 and their respec-
tive merits and demerits in Table 3.
V1: Passport is distributed with the trained DNN model

Fig. 8. Randomly shuffled passports in a 5-layered passport AlexNetp.
From left to right: Conv1 to Conv5 layers where the 4 passports in Conv2
to Conv5 corresponding to the first 4 channel of each layer.

Fig. 9. Ownership verification scheme V1. N½� is an untrained network,
N½W� is a trained network with weights W. N½W; s� is a trained network
with weightsW and embedded with signature s.

Fig. 7. Example of different types of passports: (a) random patterns, (b)
fixed image and (c) candidate images used to generate random shuffled
passports (see text in Section 4.2).

Fig. 10. Ownership verification scheme V2. Note that the public and pri-
vate trained network N share the same weightsW.
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Hereby, the learning process aims to minimize the combined
loss function (Eq. (1)), in which �t ¼ 0 since trigger set
images are not used in this scheme and the sign loss
(Eq. (6)) is added as the regularization term. The trained
DNNmodel together with the passport N½W; s� are then dis-
tributed to legitimate users, who perform network inferences
with the given passport fed to the passport layers as shown
in Fig. 6a. The network ownership is automatically verified
by the distributed passports. As shown by Table 7 and
Fig. 12, this ownership verification is robust to DNN model
modifications. Also, as shown in Fig. 16, ambiguity attacks
are not able to forge a set of passport and signature that can
maintain the DNN inference performance.

The downside of this scheme is the requirement to use pass-
ports during inferencing, which leads to extra computational
cost by about 10 percent (see Section 5.5). Also the distribution
of passports to the end-users is intrusive and imposes addi-
tional responsibility of guarding the passports safely.
V2: Private passport is embedded but not distributed
Herein, the learning process aims to simultaneously

achieve two goals, of which the first is to minimize the origi-
nal task loss (e.g., classification accuracy discrepancy) when
no passport layers included (N½W�); and the second is to min-
imize the combined loss function (Eq. (1)) with passports
regularization included (N½W; s�).

Algorithm-wise, this multi-task learning is achieved by
alternating between the minimization of these two goals.
The successfully trained DNN model N½W�is then distrib-
uted to end-users, who may perform network inference
without the need of passports. Note that this is possible since

Fig. 11. Ownership verification scheme V3. N½W;T� is a trained network
with weights W that is embedded with trigger set T. N½W;T; s� is a
trained network with weights W that is embedded with trigger set T and
signature s. Note that the public and private trained network N share the
same weightsW.

TABLE 3
A Comparison of the Three Passport-Based Ownership Verification Schemes Depicted in Section 4.4

Passport Needed Trigger set Needed Inference Fidelity Evaluation F Verification V

Training Inference if se ¼ st Otherwise White-box Black-box

V1 @ @ • N½W; s� � �f > �f V ðN½W; s�Þ -

V2 @ • • N½W� � �f > �f V ðN½W; s�Þ -

V3 @ • @ N½W;T� � �f > �f V ðN½W;T; s�Þ V ðN½W;T�Þ
See Definition (1) for fidelity evaluation process F and verification process V . White-box verification needs access to DNN weights while black-box verification
can be done through remote API call.

Fig. 12. Removal attack (Model Pruning): Classification accuracy of our
passport-based DNN models on CIFAR10, CIFAR100 and ImageNet
and signature detection accuracy against different pruning rates. The
results are obtained from scheme V1.
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passport layers are not included in the distributed net-
works. The ownership verification will be carried out only
upon requested by the law enforcement, by adding the
passport layers to the network in question N½W; s�and
detecting the embedded sign signatures with unyielding
the original network inference performances.

Compared with scheme V1, this scheme is easy to use for
end-users since no passport is needed and no extra compu-
tational cost is incurred. In the meantime, this ownership
verification is robust to both removal attacks and ambiguity
attacks. The downside, however, is the requirement to
access the DNN weights and to append the passport layers
for ownership verification, i.e., the disadvantages of white-
box protection mode as discussed in [2]. Therefore, we pro-
pose to combine it with trigger-set based verification that
will be described next.
V3: Both the private passport and trigger set are embedded but

not distributed
This scheme only differs from scheme V2 in that, a set of

trigger images is embedded in addition to the embedded
passports. The advantage of this, as discussed in [2] is to probe
and claim ownership of the suspect DNN model (N½W;T�)
through remote calls of service APIs. This capability allows
one, first to claim the ownership in a black-box mode, fol-
lowed by reassertion of ownership with passport verification
in a white boxmode.4 Algorithm-wise, the embedding of trig-
ger set images is jointly achieved in the same minimization
process that embeds passports in scheme V2. Finally, it must
be noted that the embedding of passports in both V2 and V3
schemes are implemented through multi-task learning tasks
where we adopted group normalisation [17] instead of batch
normalisation [18] that is not applicable due to its dependency
on running average of batch-wise training samples.

4.4.1 Algorithms

Pseudo-code of the three verification schemes are illustrated
in this section. For reproducibility of this work, we have
make publicly available all source codes as well as the train-
ing / test datasets that are used in this paper in https://
github.com/kamwoh/DeepIPR.

Algorithm 1. Forward Pass of a Passport Layer

1: procedure forwardXc,Wp, Pg , Pb, gpubl bpubl, idx
2: if idx ¼ 0 then ⊳ Scheme V23
3: Xp  Wp �Xc

4: Yp  gpubl �OðXpÞ þ bpubl ⊳ gpubl and bpubl is a public
parameter

5: else ⊳ Scheme V1
6: g  AvgðWp � PgÞ
7: b AvgðWp � PbÞ
8: Xp  Wp �Xc

9: Yp  g �OðXpÞ þ b ⊳ O is a linear transformation
such as BatchNorm

10: return Yp

Algorithm 2. Sign Loss

1: procedure sign lossBðlÞ,W ðlÞ
p , P

ðlÞ
g , a

2: gðlÞ  AvgðW ðlÞ
p � P ðlÞg Þ

3: loss maxða� gðlÞ �BðlÞ; 0Þ ⊳ a is a positive constant,
equals 0.1 as by default

4: return loss

Algorithm 3. Signature Detection

1: procedure signature detectionWp, Pg

2: g  AvgðWp � PgÞ
3: signature signðgÞ
4: convert signature into binary
5: decode binarized signature into desired format e.g., ascii
6: match decoded signaturewith target signature

4.4.2 Multi-Task Learning With Private Passports and/

or Trigger Set Images

The multi-task learning algorithms used for embedding pass-
ports in schemes V2 and V3 are summarized inAlgorithm 4.

Algorithm 4. Training Step

1: initialize a passport model N with desired number of pass-
port layers, Npass

2: if enable trigger set then ⊳ for scheme V3
3: initialize trigger sets T
4: initialize passport keys P in N using T
5: else
6: initialize passport keys P in N

7: encode desired signature string B into binary to be embed-
ded into signs of gp of all passport layers

8: for number of training iterations do
9: sample minibatch of m samples X {Xð1Þ, . . . , XðmÞ} and

labels y {yð1Þ, . . . , yðmÞ}
10: if enable backdoor then
11: sample t samples of T and backdoor labels yT ⊳ t ¼ 2,

default by [2]
12: concatenate Xwith T, ywith yT
13: for idx in 0 1 do ⊳ Only 1 if scheme V1
14: if idx ¼ 0 then
15: compute cross-entropy loss Lc using X, y and gpubl

16: else
17: compute cross-entropy loss Lc using X and y
18: for l inNpass do
19: compute sign loss RðlÞ using sðlÞ and gðlÞp
20: R PNpass

l RðlÞ

21: compute combined loss L using Lc and R
22: backpropagate using L and update N

It must be noted that the practical choice of formula (Eq. (3))
is inspired by the well-known Batch Normalization (BN) layer
which essentially applies the channel-wise linear transforma-
tion to the inputs [18]. Nevertheless BN is not applicable to
multi-task learning tasks because of its dependency on run-
ning average of batch-wise training samples. When BN is
used for multi-task learning, the test accuracy is significantly
reduced even though the training accuracy seems optimized.
We therefore adopted group normalization (GN) [17] in the base-
line DNNmodel for schemes V2 and V3 reported in Table 7.

4. In other words, the black-box verification is to collect enough evi-
dences (e.g., high detection rate) from suspected candidates, then
report the suspect to related department with the collected evidences to
invoke a more certain – white-box verification.
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5 EXPERIMENT RESULTS

This section illustrates the empirical study of passport-based
DNN models, with focuses on convergence and effectiveness
of passport layers. The inference performances of various
schemes are also compared in terms of robustness to both
removal attacks and ambiguity attacks. The network architec-
tures we investigated include the well-known AlexNet and
ResNet-18 and in order to avoid confusion to the original Alex-
Net and ResNet models, we denote AlexNetp and ResNetp-18
as our proposed passport-based DNNmodels. Three publicly
datasets - CIFAR10, CIFAR100 and ImageNet classification
tasks are employed because these public datasets allow us to
perform extensive tests of the DNN model performances. For
CIFAR10 and CIFAR100, we are using input size of 32 � 32
and input size of 224� 224 for ImageNet. Tables 4 and 5 show
the detailed architecture and hyper-parameters for both
AlexNetp and ResNetp-18 that employed in all the experi-
ments on CIFAR10 and CIFAR100, while architectures with
input size of 224 � 224 are using original AlexNet and
ResNet18.5 Unless stated otherwise, all experiments are
repeated 5 times and tested against 50 fake passports to get the
mean inference performance.

In the next section, we present several types of results:

� Removal attacks as a threat that intent to accomplish
removing watermarks from the host image. The tech-
niques include both fine-tuning and model pruning
(see Section 5.1).

� Ambiguity attacks as a threat that aims to puzzle the
detector by generating fake watermark from a water-
marked image. The techniques include random attack
and reverse-engineering attack (see Section 5.2).

� Internal attacks as a threat where (former) staffs
exposed/stole all the resources from the originator
and it is a special case of ambiguity attacks (see
Section 5.3).

5.1 Robustness Against Removal Attacks

5.1.1 Fine-Tuning

In this experiment, we repeatedly trained each model five
times with designated scale factor signs embedded into

both AlexNetp and ResNetp-18 networks. Table 7 shows
that the passport signatures are detected at near to 100 per-
cent accuracy for all the ownership verification schemes in
the original task. Even after fine-tuning the proposed DNN
models for a new task (e.g., from CIFAR10 to Caltech-101),
almost 100 percent detection rates of the embedded pass-
port are still maintained. Although fine-tuning from Image-
Net to CIFAR100 or Caltech-101 at worst have only 71.56
percent detection rates for AlexNetp scheme V2 and V3, but
in a ResNetp-18 is getting almost 100 percent detection rates
for all datasets or schemes. Note that a detected signature is
claimed only iff all the binary bits are exactly matched. We
ascribe this superior robustness to the unique controlling
nature of the scale factors — in case that a scale factor value
is reduced near to zero, the channel output will be virtually
zero, thus, its gradient will vanish and lose momentum to
move towards to the opposite value. Empirically we have
not observed counter-examples against this explanation.6

Table 6 shows the trigger set image detection rate before
and after fine-tuning. Note that passports are not used in
this experiment, therefore, the detection rate of the trigger
set labels deteriorated drastically after fine-tuning. Never-
theless, trigger set images can still be used in scheme V3 to
complement the white-box passport-based verification
approach.

5.1.2 Model Pruning

The aim of model pruning is to reduce redundant param-
eters without compromise the performance. Here, we
adopt the class-blind pruning scheme in [19], and test our
proposed DNN models with different pruning rates.
Fig. 12 shows that, in general, our proposed DNN models
still maintained near to 100 percent detection rate even if
60 percent parameters are pruned, by which performan-
ces of original networks about to drop around 3-24 per-
cent for all datasets. Even if we prune 90 percent
parameters, the accuracy of our proposed DNN models
are still much higher than the accuracy of testing data. As
said, we ascribe the robustness against model pruning to
the superior persistence of signatures embedded in the
scale factor signs (see Section 4.3).

TABLE 4
(Left:) AlexNetp Architecture

(Right): ResNetp-18 architecture. We modify the architectures from PyTorch to adapt input size of 32 � 32.

5. https://pytorch.org/docs/stable/torchvision/models.html
6. A rigorous proof of this argument is under investigation and will

be reported elsewhere.
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5.2 Resilience Against Ambiguity Attacks

As shown in Fig. 13, the accuracy of our proposed DNN
models trained on CIFAR10, CIFAR100 and ImageNet clas-
sification task is significantly depending on the presence of
either valid or counterfeit passports — the proposed DNN
models presented with valid passports demonstrated
almost identical accuracies as to the original DNN model.
Contrary, the same proposed DNN model presented with
invalid passports (in this case of fake1 = random attack)
achieved only 10 percent accuracy for CIFAR10 which is
merely equivalent to a random guessing. In the case of
fake2, we assume that the adversaries have access to the
original training dataset, and attempt to reverse-engineer
the scale factor and bias term by freezing the trained DNN
weights. It is shown that in Fig. 13, reverse-engineering
attacks are only able to achieve, for CIFAR10, at best 84 per-
cent accuracy on AlexNetp and 70 percent accuracy on
ResNetp-18. While in CIFAR100, for fake1 case, attack on
both our proposed DNN models achieved only 1 percent
accuracy; for fake2 case, this attack only able to achieve 44
percent accuracy for AlexNetp and 35 percent accuracy for
ResNetp-18. Even in a more challenged dataset ImageNet,
fake1 attack is still achieved only random guessing result
which is 0.1 percent for both models and fake2 attack
achieved at best 50 percent for AlexNetp and 60 percent for
ResNetp.

5.2.1 Random Attacks

The following experiments aim to disclose the dependence
of the original task performances with respect to the crucial
parameter scale factors, and specifically, its positive/nega-
tive signs.

In the first experiment, for the passport-embedded DNN
models, we assume that adversaries don’t have the passport

TABLE 5
Training Parameters for CIFAR10/100 on AlexNetp and

ResNetp-18, Respectively (y the Learning Rate is Scheduled as
0.01, 0.001 and 0.0001 Between Epochs [1-100], [101-150] and

[151-200] Respectively)

Network Architecture AlexNetp ResNetp-18

Activation Function ReLU

Optimization Method SGD

Momentum 0.9
Learning Rate 0.01, 0.001, 0.0001y
Learning Rate (ImageNet) 0.1, 0.01, 0.001y
Batch Size 64

Batch Size (ImageNet) 256
Passport Layers Conv3,4,5 Conv5_x

For ImageNet, learning rates are 0.1, 0.01 and 0.001 between epochs [1-30],
[31-60], and [61-90] respectively.

TABLE 6
Detection Rate (in %) of the Trigger Set Images (Before and
After Fine-Tuning) Used in Scheme V3 to Complement Pass-

port-Based Verifications

Trained with Fine-tuned with

CIFAR10 CIFAR100 Caltech-101

CIFAR10 100 - 24.67 57.67
AlexNetp CIFAR100 100 36.00 - 78.67

ImageNet 100 1.00 1.00 10.00

CIFAR10 100 - 12.50 13.67
ResNetp-18 CIFAR100 100 6.33 - 4.67

ImageNet 100 32.50 14.50 4.00

TABLE 7
Removal Attack (Fine-Tuning):M Denotes Model

Classification Accuracy (in %)

Value outside bracket is the model accuracyM and inside is the accuracy dis-
crepancy (k) betweenM and an unprotected baseline modelMt i.e., k =M�
Mt (see fidelity process in Definition 1 and Fig. 2b). E½V � denotes the mean
success rate (in %) of detecting the embedded signature (see verification pro-
cess in Definition 1 and Fig. 2c). V1;V2;V3 denote three different verification
schemes described in Section 4.4.
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(e.g., Fig. 8) and hence cannot use the model properly.
Adversaries have to generate their passport by their own.
We simulate random attacks by randomly assigning the
passport to compute the scale factors and bias. The perform-
ances of the model drop significantly to random guessing
which are 10-30, 1-3 and 0.1-0.3 percent for CIFAR10,
CIFAR100 and ImageNet respectively (see blue bar in
Fig. 13).

In the second experiment, we assume that adversaries
have the model and also the scale factors computed from
the passport. The attacker wishes to remove the embedded
signature on the sign of scale factors, and therefore we sim-
ulate random attacks by flipping the signs of certain ran-
domly selected scale factors (i.e., to have a certain
dissimilarity with original signature) and then measure the
performance. It turns out that the final performance are sen-
sitive to the change of signs — majority of the DNN model
performances drop significantly as long as more than (at
least) 50 percent of scale factors have flipped signs as shown
in Figs. 14 and 15, respectively. The deteriorated performan-
ces are more pronounced when the passports are embedded
in either all the three convolution layers (3-4-5) in AlexNetp
(right-most column in Fig. 14) or the last blocks in ResNetp-
18 (Fig. 15), whose performances drop to about 10, 1 and 0.1
percent for CIFAR10, CIFAR100 and ImageNet respectively.

5.2.2 Reversed-Engineering Attacks

In this experiment, we further assume the adversaries have
the access to original training data, knowing there is a signa-
ture embedded and thus are able to maximize the original
task performance by reverse-engineering scale factors. The
trained AlexNetp/ResNetp-18 are used for this experiment,
and it turns out the best performance the adversary can
achieve is no more than 84/70 percent for CIFAR10, 40/38
percent for CIFAR100 and 50/60 percent for ImageNet
respectively (see Fig. 16) if the adversary hope not to have
exactly the original signature.

Summary. Extensive empirical studies show that it is
impossible for adversaries to maintain the original DNN
model performances by using fake passports, regardless of
the fake passports are either randomly generated or
reverse-engineered with the use of original training data-
sets. Table 8 summarize passport model performances
under three different ambiguity attack modes depending on
attackers’ knowledge of the protection mechanism. It shows
that all, unless the original signature is used, the corre-
sponding passport-based DNN models accuracies are dete-
riorated to various extents. The ambiguous attacks are
therefore defeated according to the fidelity evaluation pro-
cess, F ðÞ.

It must be noted that even under the most adversary
condition, i.e., freezing weights, maximizing the distance
from the original passport P , and minimizing the accu-
racy loss (fake3), attackers are still unable to use new
(modified) scale signs without compromising the network
accuracies. As shown in Fig. 17, with 10 and 50 percent of
the original scale signs are modified,7 the CIFAR100 clas-
sification accuracy drops about 5 and 50 percent, respec-
tively. Based on these empirical studies, we decide to set
the threshold �f in Definition 1 as 3 percent for AlexNetp

Fig. 13. Ambiguity attack: Classification accuracy of our passport net-
works with valid passport, random attack (fake1) and reversed-engineer-
ing attack (fake2) on CIFAR10 (Top), CIFAR100 (Middle) and ImageNet
(Bottom). Note that, the accuracies of our passport networks with valid
passports and original DNN (without passport) are too close to separate
in histograms. The results are obtained using scheme V1.

Fig. 14. Ambiguity attack (Random): It can be seen that the performance
of AlexNetp V1 deteriorates with randomly flipped scale factor signs. Left
to right: flip one layer, two layers and three layers, respectively. Top row
is CIFAR10, middle row is CIFAR100 and bottom row is ImageNet.

7. In case that the original scale sign remains unchanged, the DNN
model ownership can be verified by the pre-defined string of signs.
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and 10 percent for ResNetp-18, respectively. By this fidel-
ity evaluation process, any potential ambiguity attacks
are effectively defeated.

In summary, extensive empirical studies have shown
that it is impossible for adversaries to maintain the original
DNN model accuracies by using counterfeit passports,
regardless of they are either randomly generated or reverse-
engineered with the use of original training datasets. This
passport dependent performances play an indispensable
role in designing secure ownership verification schemes
that are illustrated in Section 4.4.

5.3 Internal Attacks

In this section, we show how the sign (+/�) of scale factor g
can be used to encode a signature s such as ASCII code to
defeat internal threat. Table 9 shows an example of the learned
scale factors and its respective sign when we embed a signa-
ture s ¼ fthis is an example signatureg into the Conv5 of
AlexNetp by using sign loss (Eq. (6)). Note that the maximum
size of an embedded signature is depending on the number of
the channels in a DNNmodel. For instance, in this paper, the
Conv5 of AlexNetp as shown in Table 4 has 256 channels, so
themaximum signature capacity is 256bits.

For ownership verification, the embedded signature s
can be revealed by decoding the learned sign of scale fac-
tors. By using Algorithm 3, we can extract s from model N.
We can then decode s into desired format such as ASCII
code. For example, in Table 9, every 8bits of the scale factor
sign is decoded into ASCII code as follow:

1. {-1,1,1,1,-1,1,-1,-1}! 116! t
2. {-1,1,1,-1,1,-1,-1,-1}! 104! h
3. {-1,1,1,-1,1,-1,-1,-1}! 105! i
4. {-1,1,1,1,-1,-1,1,1}! 115! s
5. {-1,1,1,-1,1,-1,-1,1}! 105! i
6. {-1,1,1,1,-1,-1,1,1}! 115! s

Note that, in this proposed method, similar character (e.g., {i}
and {s}) appears in different position of a string will have dif-
ferent scale factors. Table 10 shows a comparison result when
a correct signature, partial correct signature or totalwrong sig-
nature is used inCIFAR10 classification taskwithAlexNetp. It
is shown that when a correct signature is used (i.e this is an
example signature), the classification accuracy reached 90.89
percent, while for a partial correct signature, the performance
is dropped to 82.23 percent, and a totallywrong signaturewill
obtain a meaningless accuracy (11.44 percent). Based on the

Fig. 15. Ambiguity attack (Random): It can be seen that the performance
of ResNetp-18 deteriorates with randomly flipped scale factor signs. Left
to right: Scheme V1, V2 and V3, respectively.

Fig. 16. Ambiguity attack (Reverse Engineer): Performance of (a)
CIFAR10, (b) CIFAR100 and (c) ImageNet when adversaries try to forge
a new signature by a certain % of dissimilarity with the original signature.
The results are obtained from scheme V1.

Fig. 17. Ambiguity attack: Classification accuracy on CIFAR100 under
insider threat (fake3) on three verification schemes. It is shown that
when a correct signature is used, the classification accuracy is intact,
while for a partial correct signature (sign scales are modified around 10
percent), the performance will immediately drop around 5 percent, and a
totally wrong signature will obtain a meaningless accuracy (1-10 per-
cent). Based on the threshold � �f = 3% for AlexNetp and by the fidelity
evaluation process F , any potential ambiguity attacks (even with partially
correct signature) are effectively defeated.
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threshold �f = 3% for AlexNetp and by the fidelity evaluation
process, any potential ambiguity attacks (even with partially
correct signature) are effectively defeated.

5.4 Ablation Study

5.4.1 Convergence

In this section, we showed that the introduction of the pro-
posed passport layers does not hinder the convergence of
DNN learning process. As shown in Fig. 18, we observe
that the test accuracies converge in synchronization with
the network weights, and computed linear transformation
parameters g and b which all stagnate in the later learning
phase when the learning rate is reduced from 0.01 to
0.0001.

5.4.2 Effectiveness

With the introduction of the passport layers, we essentially
separate the DNN parameters into two types: the public con-
volution layer parametersW and the hidden8 passport layer -
i.e., scale factor g and bias terms b (see Eq. (5)). The learning
of each of these parameter types are different too. On one
hand, the distribution of the convolution layer weights
seems identical to that of the original DNN without

passport layers (Fig. 19a). However, we must emphasize
that information about the passports are embedded into
weights W in the sense that following constraints are
enforced once the learning is done

AvgðWðlÞ
p � PðlÞg Þ ¼ cðlÞg ; AvgðWðlÞ

p � PðlÞb Þ ¼ c
ðlÞ
b ; (7)

where c
ðlÞ
g ; c

ðlÞ
b are two constants of converged parameters

gðlÞ;bðlÞ.
On the other hand, the distribution of the hidden

parameters are affected by the adoption of sign loss
(Eq. (6)). Clearly the scale factors are enforced to take
either positive or negative values far from zero (Fig. 19b).
We also observe that the sign of scale factors remain rather
persistent against various adversarial attacks. An

TABLE 8
Summary of Overall Passport Model Performances Under Three Different Ambiguity Attack Modes, fake

Attackers
have access

to

Ambiguous passport forging methods Verification
V

Fidelity
Evaluation

F

Model Performance

fake1 W Random passport Pr True False Large accuracy dropping

fake2 W , {Dr;Dt} Reverse engineer passport Pe True False Moderate accuracy dropping

fake3
{Dr;Dt},
{P , B}

Reverse engineer passport {Pe;Be} by
exploiting original passport P as

initialization of Pe

True False Accuracy dropping depending on
percentage of correct signature signs

(see Fig. 17 and caption)

Noted that when the attacker using Be ¼ B in fake3, even though the attacker passed the fidelity evaluation F , the ambiguity is resolved by the original
signature.

TABLE 9
Sample of the Learned Scale Factor g and Respective Signs (+/-) From the 48 Out of 256 Channels

From Conv5 of AlexNetp When we Embed Signature s = {this} and {is}

t h i s i s

g +/- bit g +/- bit g +/- bit g +/- bit g +/- bit g +/- bit

-0.11 - 0 -0.17 - 0 -0.10 - 0 -0.20 - 0 -0.17 - 0 -0.23 - 0

0.23 + 1 0.33 + 1 0.39 + 1 0.27 + 1 0.17 + 1 0.29 + 1

0.25 + 1 0.19 + 1 0.43 + 1 0.16 + 1 0.46 + 1 0.22 + 1

0.49 + 1 -0.12 - 0 -0.11 - 0 0.25 + 1 -0.27 - 0 0.19 + 1

-0.10 - 0 0.16 + 1 0.44 + 1 -0.13 - 0 0.38 + 1 -0.11 - 0

0.39 + 1 -0.18 - 0 -0.15 - 0 -0.19 - 0 -0.18 - 0 -0.15 - 0

-0.12 - 0 -0.27 - 0 -0.11 - 0 0.23 + 1 -0.11 - 0 0.23 + 1

-0.34 - 0 -0.20 - 0 0.19 + 1 0.20 + 1 0.16 + 1 0.31 + 1

TABLE 10
A Comparison of the Accuracy of AlexNet(s) in CIFAR10 Classi-
fication Task When a Correct (Top), Partially Correct (Middle)

or Totally Wrong (Bottom) Signature is Used

Signature s Accuracy (%)

AlexNet (baseline) - 91.12
this is an example signature 90.89

AlexNetp thhs iB an xxxpxXj sigjature 82.83
qpCA2JOEcDo � 1ay 11.448. In this work, traditional hidden layer parameters are considered

as public parameters.
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additional benefit of enforcing non-zero magnitudes
of scale factors is to ensure the non-zero channel outputs
and slightly improve the performances. Correspondingly
the distribution of bias terms becomes more balanced
with the sign loss regularization (Eq. (6)) included,
whereas the original bias terms are mainly negative valued
(Fig. 19c).

5.5 Network Complexity

Table 11 shows the training and inference time of each
scheme on AlexNetp and ResNetp-18, respectively using
one NVIDIA Titan V. In both of the proposed DNN archi-
tectures, the inference time of the baseline, scheme V2,
scheme V3 are almost the same as to the execution time
because all of them did not use passport to calculate g and
b. However, scheme V1 is slightly slower (about 10 per-
cent) compared to the baseline because of the extra compu-
tational cost of g and b calculation from the passport.
Training time of scheme V1, scheme V2 and scheme V3 are
slower than the baseline about 18%(ResNetp-18)/27%
(AlexNetp), 116%(ResNetp-18)/125% and 127%(ResNetp-
18)/153%, respectively. Scheme V2 and scheme V3 are
slower about 2x than scheme V1 due to the multi task
training scheme. Nonetheless, we tested a larger network
(i.e., ResNetp-50) and its training time increases 10, 182
and 191 percent respectively for V1, V2 and V3 schemes.
This increase is consistent with those smaller models i.e.,
AlexNetp and ResNetp-18.

Table 12 summarizes the complexity of passport networks
in various schemes. We believe that it is the computational
cost at the inference stage that should be reduced, since net-
work inference is going to be performed frequently by the
end users. While extra costs at the training and verification

stages, on the other hand, are not prohibitive since they are
performed by the network owners, with themotivation to pro-
tect theDNNmodel ownerships.

6 DISCUSSIONS AND CONCLUSIONS

Considering billions of dollars have been invested by giant
and start-up companies to explore new DNN models virtu-
ally every second, we believe it is imperative to protect
these inventions from being stolen. While ownership of
DNN models might be resolved by registering the models

Fig. 19. Comparison of the distributions of (a) network weights, (b) scale factors, and (c) bias terms between the original and passport DNN (Conv4 of
AlexNetpV1).

TABLE 11
Training (T) and Inference (I) Time of Each Scheme on
AlexNetp (a) and ResNetp-18 (b) Using One NVIDIA

Titan V

CIFAR10

T I

AlexNet (Baseline) 8.445 0.834
AlexNetp V1 10.745 0.912
AlexNetp V2 19.010 0.830
AlexNetp V3 21.372 0.881
(a) AlexNetp

CIFAR10

T I

ResNet (Baseline) 31.09 1.71
ResNetp-18 V1 36.67 1.94
ResNetp-18 V2 67.21 1.87
ResNetp-18 V3 70.69 1.88
(b) ResNetp-18

The values are in seconds/epoch.

Fig. 18. (a) Convergences of test accuracies, (b) weight updates, (c) scale factors, and (d) bias terms of first 10 channels in Conv4 of AlexNetpV1.
x-axis: training epochs; y-axis: see captions of subfigures.
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with a centralized authority, it has been recognized that
these regulations are inadequate and technical solutions
are urgently needed to support the law enforcement and
juridical protections. It is this motivation that highlights
the unique contribution of the proposed method in unam-
biguous verification of DNN models ownerships.

Methodology-wise, our empirical studies re-asserted that
over-parameterized DNN models can successfully learn
multiple tasks with arbitrarily assigned labels and/or con-
straints. While this assertion has been theoretically proved
[20] and empirically investigated from the perspective of
network generalization [21], its implications to network
security in general remain to be explored. We believe the
proposed modulation of DNN performance based on the
presented passports will play an indispensable role in
bringing DNN behaviours under control against adversarial
attacks, as it has been demonstrated for DNN ownership
verifications.
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Summary of Our Proposed Passport Networks Complexity for V1, V2 and V3 Schemes

Schemes

V1 V2 V3
Training Passport layers @ @ @

Passport needed @ @ @
Trigger set needed • • @
Training time 1.15x-1.30x 2x-2.25x 2x-2.5x

Inferencing Passport needed @ • •

Inference time 1.1x 1 1

Verification Black-box (by trigger) • • @
White-box (by passport) @ (verify on the go) @ (passport layers needed) @ (passport layers needed)
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