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a b s t r a c t

In developed country such as Japan, aging has become a serious issue, as there is a disproportionate
increasing of elderly population who are no longer able to look after themselves. In order to tackle this
issue, we introduce human-friendly robot partner to support the elderly people in their daily life. How-
ever, to realize this, it is essential for the robot partner to be able to have a natural communication with
the human. This paper proposes a new communication framework between the human and robot partner
based on relevance theory as the basis knowledge. The relevance theory is implemented to build mutual
cognitive environment between the human and the robot partner, namely as the informationally struc-
tured space (ISS). Inside the ISS, robot partner employs both verbal as well as non-verbal communication
to understand human. For the verbal communication, Rasmussen’s behavior model is implemented as the
basis for the conversational system. While for the non-verbal communication, environmental and human
state data along with gesture recognition are utilized. These data are used as the perceptual input to com-
pute the robot partner’s emotion. Experimental results have shown the effectiveness of our proposed
communication framework in establishing natural communication between the human and the robot
partner.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

From the year of 2000 to 2050, it is expected that the proportion
of elderly people (60 years old or older people) in the world’s
population will double from 11% to 22%, and the absolute number
of elderly people is expected to increase from 605 million to 2 bil-
lion over the same period.1 Meanwhile, in Japan, according to the
Statistics Bureau at the Ministry of Internal Affairs and Communica-
tion,2 the population of elderly people is expected to increase to 36
million, that is about 31% of the population in the year of 2030. In
Tokyo itself, it is anticipated that the number of elderly people will
reach 25.2% of the population in year 2015.

Along with the increasing number of elderly people, one must
note that the number of those elderly people who are no longer
able to look after themselves will also increase proportionally.

Many of them will lose the ability to live independently because
of limited mobility, frailty or other physical or mental health prob-
lems (Chernbumroong, Cang, Atkins, & Yu, 2013; Rueangsirarak,
Atkins, Sharp, Chakpitak, & Meksamoot, 2012). In Japan, the
increasing number of elderly people who live alone or indepen-
dently has required a large number of nursing care to support
them. However, since the number of caregivers is always limited,
it is important to introduce alternative solution to tackle this prob-
lem. One of the solutions is the introduction of the human-friendly
robot partner to support the elderly people in their daily life.

According to Broekens, Heerink, and Rosendal (2009), there are
two types of robots that are able to support the elderly people. One
is the rehabilitation robot and the other is the social robot. In the
former, the robot focuses on physical assistance technology, whilst
the latter is concerned as a system that has the capability in
human–robot communication. It is also known as the robot part-
ner. This paper focuses on the latter with a focus on realizing a nat-
ural communication between the human and the robot partner.
The natural communication can be realized when robot can under-
stand human intention or thought. We implemented the theory of
relevance (Sperber & Wilson, 1995) to build mutual cognitive envi-
ronment between human and robot partner into our system, which
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called informationally structured space (ISS) to handle this prob-
lem. According to Sperber and Wilson (1995), relevance theory is
very useful to discuss the multimodal communication, where each
person has his or her own cognitive environment that make their
communication restricted. Therefore, usually humans use their
utterances or gestures to expand their cognitive environment by
extracting person’s attention into specific target object, event, or
person. When human’s cognitive environment became wider, they
can share each other intention or thought as illustrated in Fig. 1.
The implementation of this theory into our system can be observed
in the structure of database in our system, which is explained more
detailed in Section 6. Meanwhile in conducting communication
between human and robot, we use the Rasmussen’s behavior mod-
el to build the conversation system. In addition to verbal commu-
nication, we also implement non-verbal communication such as
facial expression, emotional gestures and pointing gestures.

Our contribution of this paper is to treat all these elements
(environment recognition, human recognition and emotional mod-
el) as an unified framework in the informationally structured
space, so that a more natural communication between a robot
partner and a person can be formed. In order to facilitate this, we
built a new type of robot partner, named ‘‘iPhonoid’’. Experiments
using three different case studies have shown the effectiveness of
the proposed framework in establishing natural communication
between the human and the robot.

The rest of the paper is organized as follows. Section 2 discusses
the literature related to the proposed system. Here, we also explain
the advantage and disadvantage of the proposed method compared
to previous researches. Section 3 introduces the concept of infor-
mationally structured space. Section 4 deals with the environmen-
tal system, which includes sensor network, web system and robot
system, while robot system is explained separately in the following
section. Section 5 explains the robot partner including gesture
recognition technique and emotional model. Section 6 discusses
the database system and communication system. Section 7 details
the conversation system. Section 8 presents experimental results
of the proposed method. Section 9 summarizes and discusses the
future direction of this research.

2. Literature review

In the proposed method, we implemented relevance theory to
build mutual cognitive environment called informationally struc-
tured space; Rasmussen’s behavior model for conversational sys-
tem; emotional model and gesture recognition to realize natural
communication between human and robot partner. In this section

we discuss and compare our proposed method to previous
researches. Since mutual cognitive environment has a close rela-
tionship with ambient intelligence, we will start to review previous
researches on this field. Next, we will discuss emotional model,
thereafter gesture recognition and finally conversation system.

In works related to ambient intelligence Montes, Ortega,
Venzala, and Abril (2014) built smart environment based on soft-
ware reference architecture. The smart environment is used to con-
duct the perception process in a standard office. However, the
paper only used motion detection in order to measure data from
sensor. Details such as gestures were not included. On the other
hand, Lee, Lee, Kim, Wang, and Love (2014) proposed a method
called mixed context-aware inference, which is a novel sensor-
based context-aware system focusing on three inference process-
es: rule, inference and pattern driven. Forkan, Khalil, and Tari
(2014) used various sensors to measure data, which enabled this
method to get more accurate result. Moreover, the usage of cloud
technology made the process time become shorter. However, this
method is difficult to realize concerning the high cost. Further-
more, since user has to wear special clothes to get data from the
sensors, it is very cumbersome. Forkan, Khalil, Tari, Foufou, and
Bouras (2015) proposed fusion-based architecture, detection in
activity and location patterns using Hidden Markov Model
(HMM). Although it has a good accuracy in computation, HMM
has a disadvantage in high computation cost.

For the emotional model concept, Tay, Jung, and Park (2014)
proposed a method, which effects on occupational roles (security
vs. health-care), gender (male vs. female), and personality (extro-
vert vs. introvert) on user acceptance of a social robot. However,
they only use stereotype to conduct the evaluation, which makes
the result arguable. Daosodsai and Maneewarn (2013) proposed
a method to generate emotion of a robot using expert knowledge
by fuzzy logic. The emotion of the robot is determined using 3
types of input data, such as the robot’s personality, the ambient
environment, and the interaction with human. However, since
emotional expression is using LED only, the emotional expression
done by the robot has a lot of limitations and it is difficult to be
evaluated. Emotional model proposed by Kim, Yang, and Kwon
(2013) used episodic memory system, as a result of long term
human robot interaction and emotion generation reaction.
Although the method of this paper is very interesting, the applica-
tion is only possible in the virtual environment. Jitviriya and
Hayashi (2014) used the integration of environment, robot self-s-
tates and feedback behavior for generating robot emotion (human
data is not included). As a conclusion in the previous research the
definition of the robot’s emotion is not clear, while in our paper the
change in environment, human state (gesture and distance) effects
the robot’s emotion, which linked into the conversation system
content and robot’s facial expression.

For the works related to gesture recognition, Iengo, Rossi, Staffa,
and Finzi (2014) proposed a novel approach to real-time and con-
tinuous gesture recognition for flexible, natural, and robust
human–robot interaction (HRI), and the generation of an ad hoc
HMM. As mentioned before, one disadvantage of HMM is the high
computational cost. Gesture recognition method proposed in Xiao,
Yuan, and Thalmann (2013) is based on combination of the Cyber-
Glove and Kinect sensor, which could recognize various gestures.
The using of the CyberGlove for measurement device shows that
this method cannot be directly realized in daily life now owing
to its price. Liu, Hu, Luo, and Wu (2014) proposed a method in ges-
ture recognition by using on-board monocular camera and special-
ized gesture detection algorithms. Here, also the dynamic
movement primitives (DMP) model is employed. In this method,
since the depth information is not acquired, the recognition has
many limitations. The gesture recognition in our system used
Kinect sensor has lower the cost, although our method is not as

Fig. 1. Mutual cognitive environments via natural communication. In order to
realize a natural communication with a person, the robot partner acquires
information on the surrounding environment, as well the people’s condition by
processing the data obtained from various sensors. When the robot partner is able
to build a mutual cognitive environment, the robot partner can understand the
people’s intention or thought.
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accurate as the previous research. In addition, since our robot part-
ner uses iPhone as a mainframe to speed up the computational
cost, the growing neural gas algorithm is adopted to extract fea-
tures of sensing data beforehand and then spiking neural network
to recognize the gesture. A deep explanation of gesture recognition
can be found in Section 5.2.

In the conversation system related research, Nesselrath (2013)
proposed a dialogue system framework architecture that supports
cognitive load prediction and situation-dependent decision making
and manipulation of the HCI. This paper also proposed the multi-
modal fusion and fission which shows the system of how to inter-
act with human and learning. On the other hand, Liu, Pasupat,
Cyphers, and Glass (2013) proposed multilingual dialogue systems
and seamless deployment to mobile platforms. English and Man-
darin systems in various domains (e.g. movie, flight and restau-
rant) are implemented with the proposed framework. However,
since the dialogue system works in online server (connected into
Internet), it cannot work in offline state. Lopes, Eskenazi, and
Trancoso (2015) presented the used of data-driven approach to
improve Spoken Dialog System (SDS) performance by automatical-
ly finding the most appropriate terms to be used in system
prompts. On the other hand, the conversation system of our
method can be conducted in the server or in the robot partner.
The conversation system in our method is built as the result of
the connectivity between the environment and the robot indi-
vidual intelligence. Basically, the conversation system contents is
stored in the ISS server. However, minimum conversation system
is also stored in the robot partner used as input–output interface.
When the robot starts to communicate with the human, the robot
will conduct the learning process based on the conversation con-
tents time, human state, and environment state.

Similar systems to our proposed system were developed previ-
ously. For example, Takemura and Ishii (2011) explained the recog-
nition of environment by the usage of color property; Shahdi and
Bakar (2012) implemented face recognition technology and
Botzheim, Obo, and Kubota (2012) employed the gesture recogni-
tion technology to perform human recognition. Moreover, Böhme
et al. (2003) used person localization based on the face recognition
and skin color detection (Tan, Chan, Yogarajah & Condell, 2012) to
develop their robot. Since communication also involves the per-
ception of intention and feeling, human emotion plays an impor-
tant role in the act of communication, which leads to an action.
Bien and Lee (2007) besides consider human gesture as the infor-
mation for the robot, the emotional information such as facial
expression and voice tones are also utilized to determine the robot
action. Similar approaches can be found in Zhang, Jiang, Farid, and
Hossain (2013). On another variant, according to Botzheim,Tang,
Yusuf, Obo, & Kubota et al. (2013), a robot partner with emotional
model can give meaning and value to the perceptual information,
which leads to a decision based on internal and external state. That
is when a person is in the state of sadness, his action will show the
state of sadness. Therefore, it is also important to implement emo-
tion into the robot partner. The comparison of these methods with
our method can be found in Section 8.4 in the discussion of the
experiments.

3. Informationally structured space

3.1. Human–computer interaction

Recently, ubiquitous computing (Cerpa et al., 2001; Chan, Liu, &
Brown, 2007; Ingelrest et al., 2010; Mainwaring, Culler, Polastre,
Szewczyk, & Anderson, 2002; Preuveneers et al., 2004) has become
one of the main attentions in the development of information tech-
nology. Ubiquitous computing can be defined as the opposite of

virtual reality. While virtual reality puts people inside a comput-
er-generated world, ubiquitous computing forces the computer
to integrate the world with people (Jeng, 2009; Johanson, Fox, &
Winograd, 2002; Lim, Tang, & Chan, 2014; Römer, Schoch,
Mattern, & Dübendorfer, 2004). This technology can also be
described as pervasive computing and ambient intelligence. Ambi-
ent intelligence is an emerging discipline that brings intelligence to
our everyday environments and makes those environments sensi-
tive to us (Cook, Augusto, & Jakkula, 2009). The concept of sensor
network and ubiquitous computing integrated into robotics can
be called as network robotic and ubiquitous robotic (Kim, Kim, &
Lee, 2004; Kubota & Nishida, 2006). The network robotic is basical-
ly divided into three parts: visible robots, unconscious robots, and
virtual robots (Kubota, 2008). The visible robots use their body to
act with human. The unconscious robots are used to acquire envi-
ronmental data and the existence along with human is invisible.
The virtual robot points out an agent or a software package in
the cyber world. Based on these, we can make a conclusion that
a robot can be used not only as a human-friendly life-support sys-
tem, but it can also become an interface connecting the physical
world with the cyber world (Costa, Castillo, Novais, Caballero, &
Simoes, 2012; Kubota, 2005; Kubota, Nojima, Kojima, & Fukuda,
2006).

3.2. Informationally structured space

However, since the common problems in these researches are
the distributed measurement and computing, the cooperative
and distributed measurement used for realizing communication
between a robot and a human has not been discussed frequently.
In order to realize a natural communication between a robot part-
ner and a human, the environment surrounds the human and the
robot should have a structured platform to gather, store, transform,
and provide information easily. This kind of environment is called
the informationally structured space (Kubota & Yorita, 2009).
Informationally structured space (ISS) basically has the following
properties; (1) Generality and Shareability of Information, (2) Rev-
ersibility of Information, and (3) Human Understandability of
Information (Kubota, Tang, Obo, & Wakisaka, 2010).

Information gathered in the environment is transformed by the
robot partner and the sensor network device into a qualitative
information to be uploaded to ISS using its own rule and reversibly
can transform the information downloaded from ISS to measure-
ment data by its own rule. This sharing information process within
the environment, realizes natural communication between a
human and a robot. Fig. 2 illustrates the concept of informationally
structured space. In order to understand ISS deeply, we will discuss
the ISS concerning life hub and robot partner in detail.

3.3. Informationally structured space for life hub

The word ‘‘life hub’’ is the extended concept of ‘‘digital hub’’
explained by the late Steve Jobs. He explained that Macintosh in
a short time could serve as the Digital Hub that unites those dis-
parate points in our digital life (January 9, 2001). In Life Hub, we
unite people with physical and virtual information including (1)
personal information, (2) environmental information, (3) Internet
information, (4) people, (5) place, (6) goods, and (7) events, in addi-
tion to real world. These information will be structured and record-
ed in the database, which can be accessed by the robot partner.

Fig. 3 illustrates the ISS when gathering personal information to
produce daily life log. This figure shows different levels of informa-
tion supports, such as personal information, indoor life log, and
outdoor activity log. Personal information can be gathered by a
smart phone. Indoor life log can be created by sensor network.
The next level is when the human activity log considers also out-

4542 D. Tang et al. / Expert Systems with Applications 42 (2015) 4540–4555



door information. As shown in Fig. 3 a rechargeable IC card is used
to trace the shopping and traveling activities of people.

The gathered information can be used on different levels as
well. The first level is the information support for family, or in
the case of elderly people for the caregivers. The other level is
social network in the sense of a local community on the Internet.
The last level is the complete information support using Internet.

3.4. Informationally structured space for robot partners

Concerning a robot partner, we divide the robot partner mod-
ules into three parts, such as the perceptual modules, the decision
making modules, and the action modules. In order to perform nat-
ural communication, the robot partner with perceptual modules is
able to understand the people’s behavior and the surrounding
environmental condition. In this paper, we use a Sensor Network
Module as the perceptual modules.

While the robot partner can get the people’s state and the sur-
rounding information by its perceptual module, the robot partner
also needs to have decision-making modules to support people.

The decision making module used in this paper is a basic commu-
nication module, which supports the daily conversation. Finally, in
order to perform multi-modal communication, an action module is
utilized. For the action module, we propose several sub-modules
such as utterance module, gesture expression module, and emo-
tional module. The utterance module performs actions such as
planning conversation and speech synthesizing for conducting
utterance. In the gesture expression modules, we defined many
common gestures for different robot partners. Therefore, even for
a different robot partner, the gesture expression is the same. For
enhancing the robot partner, an emotional module is applied in
the robot partner. Each of the discussed modules will be detailed
in the next sections.

4. Environmental system

In this paper, we apply the concept of ISS to build the proposed
system as shown in Fig. 4. This system is divided into an environ-
mental system and a database. The environmental system is com-
posed of a sensor network system, a web system, and a robot
system. For measuring the environment and the human condition
information, we apply the sensor network system. News or weath-
er reports can be extracted using the web system, and the robot
system is utilized for conducting directional interaction with the
human while saving the human communication history into the
database. The data processing work flow is as follows. First, the
sensor network as an information collecting module gets all infor-
mation required including environmental and human condition
information periodically. These information is stored into the data-
base server as a perceptual input for the emotional model. The
emotional model processes all information to realize a robot part-
ner which emotionally interacts with human. The output of the
emotional model is sent to the robot partner as a signal to be con-
verted into conversation contents, gestural and facial expression.
The human reaction as the result of the robot partner’s action is
used again to update the robot partner’s next action through the
sensor network system, database and emotional model. In the next
subsection, we will discuss the sensor network and web system.
Whilst robot partner will be discussed in the next section.

Fig. 2. Informationally structured space.

Fig. 3. Data gathering in informationally structured space.
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4.1. Sensor network system

According to the reliability of recognition technologies for
establishing natural communication, the range of communication
is separated into three types: short range (! 700 [mm]), middle
range (700 ! 2,000 [mm]), and long range (2,000! [mm]). For
the short and middle range, the touch interface and Microsoft
Kinect are used to gather the required data for the robot partner.

As an important part in gaining human perception, the visual
system supports the cognitive associated process (Alexandre &
Tavares, 2010; Wu & Hsu, 2011). In this paper, the visual system
of the robot partner is used to measure not only environmental
data, but also human state data such as gesture recognition mea-
surement. In order to conduct these tasks, the robot partner’s
equipped sensors are not enough to collect the required informa-
tion. Therefore, we use Microsoft Kinect3 to perform these tasks
as depicted in Fig. 5(a). With the technical specifications shown in
Table 1, Microsoft Kinect is applied to extract information presented
in Table 2. For measuring environment information, we use the RGB
data of the environment extracted by Kinect to calculate brightness
(br) and darkness (d) as perceptual inputs for the emotional model
using Eqs. (1) and (2), respectively.

br ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 0:241þ g2 # 0:691þ b2 # 0:068

q

350
ð1Þ

d ¼
255'

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 0:241þ g2 # 0:691þ b2 # 0:068

q

350
ð2Þ

For the distance data, the z axis of Microsoft Kinect is used for
calculation. The human activity is calculated by counting the dif-
ference of human position in x and y axis at time t and t ' 1.
Human gesture computation will be explained in the following
section. Human detection will determine the human existence in
the room, while the number of people shows the number of people
in the room. These data are used as the input data for perception.

Fig. 4. The structure of our proposed system. It consists of an environmental system and a DB system.

(a) Microsoft Kinect (b) Sun SPOT (c) Wireless Optical Oscillo-sensor

Fig. 5. Sensor network system. Our sensor network system consists of a Kinect, Sun Spot and an optical oscillo-sensor.

Table 1
Specification of Microsoft Kinect.

Size 282# 72# 72 [mm]
Horizontal field of view 57 [deg]
Vertical field of view 43 [deg]
Physical tilt range (27 [deg]
Measuring range 1.2–3.5 [m]
Resolution 320# 240;640# 480 [pixel]
Frame rate 30 [fps]

Table 2
Extracted data from Microsoft Kinect.

Sensory data Input data for emotion

RGB data Brightness
Darkness

Skeleton data Distance data
Human activity
Human gesture
Human detection
Number of people

3 See www.xbox.com.
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Meanwhile, for the long range, SUN Spot and Wireless optical
oscillo-sensor are employed. The Sun SPOT (Sun Small Pro-
grammable Object Technology) is a small and battery-powered
wireless sensor network (WSN) developed by Oracle Corporation
(Sun Microsystems).4 As shown in Fig. 5(b) and Table 3, the Sun
SPOT is built by the IEEE 802.15.4 standard, which can be used for
a wide range of applications including robotics, environmental
monitoring, asset tracking, proactive health care and many others.
The Sun SPOT is also powered by a specially designed small-footprint
Java virtual machine called Squawk, which can host multiple appli-
cations concurrently requiring no underlying operating system.
The wireless optical oscillo-sensor is a sensor used for estimating
human states on a bed developed by NEW SENSOR Incorporated.5

The sensor composed of a pneumatic sensor and an ultrasonic sensor
as displayed in Fig. 5(c).

4.2. Web system

As the widespread of tablet-PC and smartphone enforces the
development of communication technology, people easily use
cloud technology anywhere and anytime. Moreover, using twitter
and facebook as social media, people around the world can easily
share their opinion, feeling and information by connecting to the
Internet. The latest news around the world even some gossips
about movie stars can be acquired using the RSS (Rich Site Summa-
ry) service. Additionally, we can even know which and where the
best restaurant around us is, using Google Web API or Yahoo
Web API.

However, for the elderly people or people with cognitive
decline, information provided by computer or smart devices can-
not be acquired, because for them these new technologies are
not accustomed yet. Because of this reason, we develop an infor-
mation support system for these people, which can extract infor-
mation from Internet. This system is called web system and
shown in Fig. 6. Web system is composed of web information
extraction and database, where the extraction information called
meta data can be seen in Fig. 7. The web information extraction
uses RSS (Rich Site Summary) and yahoo web API for acquiring
weather and news information in XML file. This extracted data is
stored as contents in database to be reused. Table 4 shows the
example of weather news, while Table 5 shows the news example.

5. Robot partner

In the previous researches, we have developed and applied var-
ious types of robot partners such as MOBiMac, Hubot, Apri Poco,
and Miuro to be used as a support system for elderly people
(Kubota, 2005; Kubota & Yorita, 2009). However, since the wide-
spread of smartphone and tablet PC makes their price decreasing
along the time, we have been developing a robot partner, which
combines smartphone and embedded system into a small, mobile,
and economical device. The word ‘‘Economical’’ means that as

smartphones are equipped with various sensors like acceler-
ometer, gyro, camera, and microphone, we can decrease the price
of the robot partner. In this paper the robot partner will act not
only to measure the human condition using touch sensor and voice
recognition, but iPhonoid will also process the collected data
through sensor network using emotional model to perform a par-
ticular action. The architecture of the iPhonoid can be seen in Fig. 8.

5.1. Emotional model

We develop emotional models composed by emotion, feeling,
and mood measured based on a time scale. This development is
done by assuming that emotion change temporally based on the
perceptual information on the internal state and the external envi-

Table 3
Specification of SunSPOT.

Size 41# 23# 70 [mm]
Weight 54 [g]
3-Axis accelerometer range 2G/3G
Light sensor range 0–750 [raw reading from 1x]
Battery 720 [mAh] lithium-ion battery
OS Squawk VM
Wireless radio 2.4 GHz, IEEE 802.15.4

Fig. 6. Web information extraction system structure.

Fig. 7. Metadata of web information.

Table 4
Example of weather news database.

Day Date Temp (max) Temp (min) Weather

Wednesday 140507 22 16 Sunny
Thursday 140508 24 17 Sunny
Friday 140509 25 19 Sunny and cloudy

Table 5
Example of the latest news database.

No Topic Time Contents

10001 World 140517202514 Laos government’s plane crash cause
death of vice prime minister

10002 World 140517131908 China Republic requests payment from
Vietnam

10003 World 140517153048 CNN fired editor of 50 plagiarism

4 See www.sunspotworld.com/index.html.
5 www.new-sensor.com.
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ronment (Kubota & Wakisaka, 2010; ; Yorita, Botzheim, & Kubota,
2013). Emotion is used for intermediating the perceptual system
and emotional model, while considering it as an intense short-term
mental state based on perceptual information. This leads to the
assumption of the emotion changing, which depends on specific
perceptual information. As a part of the robot partner, smartphone
converts independently the gestures and the environmental infor-
mation as perceptual information to emotional input based on pre-
defined data. Each feeling is updated as the summation of
emotions.

The ith emotional input uE
i ðtÞ is generated based on the uI

j;kðtÞ
perceptual information as follows:

uE
i ðtÞ ¼ wE

i;j;k ) u
I
j;kðtÞ; ð3Þ

where wE
i;j;k is the degree of contribution from the jth gesture and

kth environmental data to the ith emotion ('1 6 wE
i;j;k 6 1).

Yorita et al. (2013) defined five different feeling models. In this
paper, we apply the model where the state of the ith feeling uF

i ðtÞ is
updated by the emotional input from the viewpoint of bottom-up
construction and the top-down constraints from mood values are
also considered as displayed in Fig. 9:

uF
i ðtÞ ¼ tanh juF

i ðt ' 1Þ þ ð1' jÞ Eþ Fi½ +
" #

; ð4Þ

where

E ¼
XNE

j¼1

uE
j ðt ' 1Þ

Fi ¼
XNF

j¼1;j–i

wF
i;j ) u

F
j ðt ' 1Þ

j ¼ cF

1þ uM
1 ðt ' 1Þ ' uM

2 ðt ' 1Þ
; ð5Þ

where cF is the temporal discount rate of feelings (0 < cF < 1), NE is
the number of emotional inputs, NF is the number of feelings, wF

i;j is

the stimulation or suppression coefficient from the jth feeling to the
ith feeling ('1 6 wF

i;j 6 1), and uM
mðtÞ is the value of the mth mood.

We use positive mood (m ¼ 1) and negative mood (m ¼ 2). The
hyperbolic tangent is used to regulate the values of feelings.

Mood is defined as the long-term state updated by a change in
feelings, and governs changes in feelings. While feeling is defined
as a short-term state updated by a change in emotion. The state
of the mth mood is updated by the sum of feelings:

uM
mðtÞ ¼ tanh cMuM

mðt ' 1Þ þ ð1' cMÞ
XNF

i¼1

wM
m;iu

F
i ðtÞ

" #
; ð6Þ

where cM is the discount rate and wM
m;i is the stimulation or suppres-

sion coefficient from the ith feeling to the mth mood
('1 6 wM

m;i , 1). The structure of the model is shown in Fig. 9. In this
figure, we can see how the feeling and mood influence each other
and the emotion can be considered as an input impulse to the
feeling.

5.2. Gesture recognition

In this paper, the structured learning (SL) is adopted as similarly
in Botzheim et al. (2013) and Botzheim and Kubota (2012). SL con-
tains two stages, a topology learning phase and a spatio-temporal
learning phase. The growing neural gas (GNG) is applied in the first
phase for information extraction, and the spiking neural network
(SNN) is applied in the second stage to recognize the gesture.

5.2.1. Growing neural gas for information extraction
Unsupervised learning is performed by using data without any

teaching signals (Fritzke, 1992, 1995; Kohonen, 2001; Martinetz &
Schulten, 1991). Self-Organizing Map (SOM) (Kohonen, 2001),
Neural Gas (NG) (Martinetz & Schulten, 1991), Growing Cell Struc-
tures (GCS) (Fritzke, 1992), and Growing Neural Gas (Fritzke, 1995)
are some well known unsupervised learning methods that use the
competitive learning approach. In SOM, the number of nodes and
the topological structure of the network are designed beforehand
Kohonen (2001). In NG, the number of nodes is also constant, how-
ever its topological structure is updated according to the distribu-
tion of sample data (Martinetz & Schulten, 1991). On the other
hand, GCS and GNG can dynamically change the topological struc-
ture based on the adjacent relation (edge) referring to the ignition
frequency of the adjacent node according to the error index. GCS
does not delete nodes and edges and it must consist of k-dimen-
sional simplices whereby k is a positive integer chosen in advance.
On the other hand, GNG can delete nodes and edges based on the
concept of ages (Fritzke, 1995). The initial configuration of each
network is a k-dimensional simplex, if k ¼ 1 then it is a line, if
k ¼ 2 then it is a triangle, and if k ¼ 3 then it is a tetrahedron
(Fritzke, 1992). GCS has been applied to construct 3D surface mod-
els by triangulation based on 2-dimensional simplex. However,
because the GCS does not delete nodes and edges, the number of
nodes and edges is over increasing. Another disadvantage of GCS
is that it cannot divide the sample data into several segments.
GNG can overcome these drawbacks. When applying GNG, the dis-
tance criterion is used for extracting human motions. The GNG
algorithm is described in Algorithm 1.

The following notations are used in the learning algorithm of
GNG (Fritzke, 1995, 1996): ri is the 3-dimensional vector of a node
(reference vector, ri 2 R3); v is the 3-dimensional input data, calcu-
lated from the Kinect data, describes the relative position from
shoulder where shoulder position is set at ð0;0;0Þ;A is a set of node
indices, Ni is a set of node indices connected to the ith node, and ai;j

is the age of the edge between the ith and the jth node.

Fig. 8. Our new robot partner, namely the iPhonoid.

Fig. 9. The structure of the proposed emotional method.
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Algorithm 1. GNG ALGORITHM

Step 1: Generate two units at random position, r1; r2 in R3.
Initialize the connection set.
Step 2: Generate an input data v randomly according to
pðvÞ which is the probability density function of data v.
Step 3: Select the nearest unit (winner), s1 by Eq. (7) and
the second-nearest unit, s2 by Eq. (8).

s1 ¼ arg min
i2A
jjv ' rijj ð7Þ

s2 ¼ arg min
i2Anfs1g

jjv ' rijj ð8Þ

Step 4: If a connection between s1 and s2 does not exist
already, create the connection. Set the age of the connec-
tion between s1 and s2 to zero, as1 ;s2 ¼ 0.
Step 5: Add the squared distance between the input data
and the winner to a local error variable (which is initial-
ized as 0): Es1  Es1 þ jjv ' rs1 jj

2.
Step 6: By using the total distance to the input data, update
the reference vectors of the winner node, s1 (see Eq. (7))
using Eq. (9) and its direct topological neighbors using
Eq. (10) by the learning rate g1 and g2, respectively.

rs1  rs1 þ g1 ) ðv ' rs1 Þ ð9Þ
rj  rj þ g2 ) ðv ' rjÞ if j 2 Ns1 ð10Þ

Step 7: Increment the age of all edges emanating from
s1 : as1 ;j  as1 ;j þ 1 if j 2 Ns1

Step 8: Remove edges with an age larger than amax. If this
results in units having no more emanating edges, remove
those units as well.
Step 9:If the number of input signals generated so far is an
integer multiple of a parameter k, insert a new unit using
the following steps:

a. Select the unit q with the maximum accumulated
error according to Step 5.
b. Add a new unit r to the network and interpolate its
reference vector from q and f using Eq. (11), where f
is that neighbor of q which the largest error has accord-
ing to Step 5.

rr ¼ 0:5 ) ðrq þ rf Þ ð11Þ

c. Insert edges connecting the new unit r with units q
and f, and remove the original edge between q and f.
d. Decrease the error variables of q and f by a fraction a:

Eq  Eq ' a ) Eq ð12Þ
Ef  Ef ' a ) Ef ð13Þ

e. Interpolate the error variable of r from q and f:

Er ¼ 0:1 ) ðEq þ Ef Þ ð14Þ

Step 10: Decrease the error variables of all units:

Ei  Ei ' b ) Ei ð8i 2 AÞ ð15Þ

Step 11: Continue with Step 2 if a stopping criterion is not
yet fulfilled. The net size or some performance measure
can be used as a stopping criterion.

5.2.2. Spiking neural network for gesture recognition
In the second stage of the proposed method, the spiking neural

network is applied to recognize the human gestures. However, in
order to reduce the computational cost, a modified spike response
model is applied in this paper as to Botzheim and Kubota (2012),
Tang, Botzheim, Kubota, and Yamaguchi (2013) and Kubota,
Toda, Botzheim, and Tudjarov (2013). We use two-layered SNNs
which are composed of an input layer and an output layer. Each
gesture is recognized by one SNN. The number of spiking neurons

in each SNN is N, which is the same as the number of reference vec-
tors. The proposed model is depicted in Fig. 10.

The internal state hk;iðtÞ of a spiking neuron i in the input layer
for the kth gesture is calculated as follows:

hk;iðtÞ ¼ csyn ) hk;iðt ' 1Þ þ hsyn
k;i ðtÞ þ href

k;i ðtÞ þ hext
i ðtÞ; ð16Þ

where csyn is a temporal discount rate, hsyn
k;i ðtÞ includes the pulse out-

puts from the other neurons, href
k;i ðtÞ is used for representing the

refractoriness of the neuron, hext
i ðtÞ is the input to the ith neuron

from the environment.
The input to the ith neuron from the external environment is

calculated by the difference between the reference vector and
the input vector:

hext
i ðtÞ ¼ exp 'cenv ) ðv ' riÞ2

$ %
; ð17Þ

where cenv is a coefficient, v is the input vector.
The pulse outputs from the other neurons, hsyn

k;i ðtÞ is calculated
by:

hsyn
k;i ðtÞ ¼

tanh
XN

j¼1;j–i

wges
k;j;i ) h

PSP
k;j ðt ' 1Þ

 !
if hext

i ðtÞP hsyn;

0 otherwise;

8
><

>:
ð18Þ

where wges
k;j;i is the weight from the jth neuron to the ith neuron in

the kth SNN (kth gesture), hsyn is a threshold, hPSP
k;j ðtÞ is the PostSy-

naptic Potential (PSP) approximately transmitted from the jth neu-
ron in the kth SNN at the discrete time t. The hyperbolic tangent is
used to avoid the repeated firing by several neurons without an effi-
cient input (without reaching the hsyn threshold).

When the internal state of the ith neuron reaches a predefined
threshold level, a pulse is outputted as follows:

pk;iðtÞ ¼
1 if hk;iðtÞP hpul;

0 otherwise;

(
ð19Þ

where hpul is a threshold for firing. In case of firing, R is subtracted
from the href

k;i ðtÞ value of neuron i as follows:

href
k;i ðtÞ ¼

cref ) href
k;i ðt ' 1Þ ' R if pk;iðt ' 1Þ ¼ 1;

cref ) href
k;i ðt ' 1Þ otherwise;

8
<

: ð20Þ

where cref is a discount rate of href
k;i and R > 0.

Fig. 10. Our proposed spiking neural network for gesture recognition.
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The presynaptic spike output is transmitted to the connected
neuron through the weight connection. The PSP is calculated as
follows:

hPSP
k;i ðtÞ ¼

1 if pk;iðtÞ ¼ 1;

cPSP ) hPSP
k;i ðt ' 1Þ otherwise;

(

ð21Þ

where cPSP is a discount rate of hPSP
k;i and 0 < cPSP < 1. The PSP is exci-

tatory if the weight parameter, wges
k;j;i is positive. If the condition

hPSP
k;j ðtÞ < hPSP

k;i ðtÞ is satisfied, the weight parameter is trained based
on the temporal Hebbian learning rule (Hebb, 1949):

wges
k;j;i  tanh cwgt )wges

k;j;i þ nwgt ) hPSP
k;j ðtÞ ) h

PSP
k;i ðtÞ

$ %
; ð22Þ

where cwgt is a discount rate of the weights and nwgt is a learning
rate.

The evaluation value for the kth gesture in the output layer is
calculated by:

hges
k ðtÞ ¼ cges ) hges

k ðt ' 1Þ þ
XN

i¼1

hPSP
k;i ðtÞ; ð23Þ

where cges is a discount rate. The gesture recognition at the discrete
time t is done by:

gðtÞ ¼ arg max
k

hges
k ðt ' 1Þ: ð24Þ

Finally, the overall recognition result is calculated as the most fre-
quently selected gesture over time. The information flow is illus-
trated in Fig. 10.

6. Database system

We propose the database structure as illustrated in Fig. 11 to
realize the informationally structured space. The database struc-
ture is divided into eight parts; (A) Human condition, (B) Personal
model, (C) Life log, (D) Human behavior, (E) Conversation log, (F)
Conversation contents, (G) Web information, and (H) Sensor raw
data.

The sensor raw data (H) is acquired from the measurement by
sensor network inside the room and by the smartphone outside
the room. Web information (G) is the database that stores the
information extracted from the Web to generate sentences in the
conversation. Conversation contents (F) provides robot partner
with conversation contents to support the communication
between the robot partner and the human. The conversation con-
tents is composed of (F1) Scenario conversation, (F2) Daily conver-
sation, and (F3) Information support. Conversation between the
robot and the human recorded as Conversation log (E).

Human behavior (D) records human behavior estimation
results, which are estimated by active sensing from the robot part-
ner (E) and passive sensing from the sensor network (H). Life log

(C) is the database of life log. It is constructed by storing human
behavior in time. Human condition (A) and Personal model (B)
are statistical analysis result of Life Log. Personal models are the
database of personal models, which lead to individual lifestyle
and preference extraction. Human states are the database for esti-
mating regular and irregular human state.

7. Conversation system

The conversation system has been developed for many years
with various architectures and standardizations. In the interaction
between a human and a robot partner, when the robot partner
leads the conversation, the robot partner has a good performance
if the human’s expectation can be fulfilled. However, if the
human’s expectation cannot be fulfilled, the interaction between
them will be broken. On the other hand, if the human leads the
conversation, interaction building between the human and the
robot partner is difficult owing to the current technology. There-
fore, in order to realize natural communication, we suppose that
first the robot partner leads the conversation, ideally in the middle
of interaction the human also takes place to lead the conversation
interactively. This process can be performed, as long as the robot
partner conducts sequential transitional behavior, while in arbi-
trary timing it performs some action reflectively to human inter-
ruption behavior.

According to Rasmussen, Pejtersen, and Goodstein (1994),
human behavior based on information processing is composed of
skill level, rule level, and knowledge level. The skill level is a daily
common and repetitive behavior, which does not need memory
and knowledge referring process while performing it. In other
word, the skill level can be defined as an unconscious, reflective,
and short time behavior. Meanwhile, the rule level is defined as a
behavior based on customs and rules. This kind of behavior needs
human memory and knowledge referencing process in order to
perform the behavior correctly. Comparing to skill level, the rule
level needs more time to conduct. The knowledge level is behavior
performance for unknown or unfamiliar situations. In order to per-
form this kind of behavior, sufficient knowledge is needed. Other-
wise, during the performance, the human can have new knowledge
while doing some optimization to get the best result.

In the wider application, Rasmussen’s behavior model has been
applied to human and voice interface. We also believe that Ras-
mussen’s behavior model can be applied to conversation system
as well. Here, we propose a human conversation system based
not only on Rasmussen’s behavior model, but also on existed con-
versation architecture. As shown in Fig. 12, the conversation sys-
tem is divided into three parts, such as skill, rule, and knowledge
based conversation system. In the skill based conversation system,
daily conversation with reflective, repeated, and short conversa-
tion is performed. The rule based conversation system takes place
as information support conversation. Here, using the word under-
standing model, the latest news or weather condition can be
requested. In the other situation, information support conversation
can be conducted based on time and on the human’s condition. The
knowledge based conversation is performed based on the under-
standing of conversation keyword. Through this keyword, conver-
sation is conducted by picking suitable dialogue topic scenario.

From conversation architecture, the conversation system can be
structured into detailed parts as shown in Fig. 13. The conversation
structure is divided into four layers, including mode, node1, node2
and contents. The first layer ‘‘mode’’, pointed the conversation
mode. While the second and third layer show subcategory of the
conversation mode. The last layer mentions the conversation con-
tents. Using the conversation structure, the robot partner can per-
form the learning process to select suitable conversation contents
based on the people’s state and time. Figs. 14 and 15 show the dailyFig. 11. Database structure.

4548 D. Tang et al. / Expert Systems with Applications 42 (2015) 4540–4555



conversation contents and information conversation contents used
in the experiment process. The parameters are defined in the left
side of conversation contents column as classifiers in selecting con-
versation contents.

In the experiment part, as shown in Fig. 16, we define the
details of some parameters such as human state, human behavior,
human gesture, robot emotion and robot action. For the utterance
selection module, we propose a method that composed of two
stages: (1) utterance group selection and (2) word or sentence
selection. Basically, an utterance group is composed of different
words or sentences having the same meaning, e.g., ‘‘hello’’=hi, hel-
lo, ya. First, the utterance group is selected according to the flow of
the context in the conversation control module and perceptual
information. Next, one word or sentence is stochastically selected
from the group according to the state of feelings. The state of feel-
ings corresponds to the utterance group is calculated using spiking
neural network.

When the spiking neuron corresponding to the ith utterance
group fires, the selection strength (sG

i;k) of the kth words in the ith
utterance group related to the jth feeling is calculated by

sG
i;k ¼ uF

j ðtÞ ) exp ' uF
j ' FG

j;i;k

$ %2
& '

: ð25Þ

After that, the selection probability pG
i;j

$ %
is calculated using Boltz-

mann selection scheme as follows;

pG
i;j ¼

exp sG
i;k=TG

$ %

PNG
i

g¼1 exp sG
i;g=TG

$ % ð26Þ

where TG is a positive value called the temperature, NG
i is the num-

ber of candidate words in the ith utterance group. According to the
equation, when the temperature is high, the robot partner will ran-
domly select utterance words from the ith utterance group. As the
temperature decreases, the robot partner deterministically selects
the utterance words with high selection strength. At the same time,
the robot partner selects hand gesture corresponding to the selected
utterance (Fig. 17).

8. Experiment

In this paper, we divided the experiment into three case studies.
In the first case study, we want to investigate and validate the pro-
posed emotional model through the computation of environmental
conditions and human behaviors (movement and distance) effects
to robot partner. For the second case study, we conducted the
experiment much further about the robot partner’s emotions in
conjunction with human gesture recognition. Finally, in the third
case study, we investigate the feasibility of our integrated system,
starting from data collection through sensors, data processing, and
conversation system.

8.1. Case study 1

In this experiment, we considered the effects of environmental
conditions during the communication with the robot partner.
Table 6 shows the contribution parameters from perception input
to feeling. These parameters are acquired as the optimum result
of the trial and error parameter settings. Fig. 18 displays the

Fig. 12. Conversation system architecture.

Fig. 13. Conversation contents structure.
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communication process between the robot partner and the person
in the experiment. In the experiment, as the environment bright-
ness is high, the robot partner is in the state of happiness (a,c,e)

as depicted in Fig. 19. In addition, when the person started to make
some action (moving action), the happiness value increases faster
than before, especially when the person walked near the desk
(d,f). Meanwhile, the fear value increases when the room changed
to dark (b). From here, we can notice that linkage between the
emotion model and environmental changes. This is a very crucial
aspect as the robot partner need to be very sensitive to the envi-
ronmental changes, when communicating with the human.

8.2. Case study 2

In the second experiment, gesture recognition is considered in
the communication with the robot partner. Through gesture recog-
nition, the robot partner is expected to understand the human
behavior using non-verbal communication. On contrary with the
first experiment, in this experiment we added some contribution
parameters for gesture as shown in Table 7. In Fig. 20, we can
see the environmental conditions including the changing of the
room brightness and the human gesture recognition process.
Fig. 21 depicts the experiment results through a graph

Fig. 14. Daily conversation contents.

Fig. 15. Information support contents.

Fig. 16. Conversation contents parameters.

(a) Pleasure (b) Anger (c) Sadness (d) Fear

Fig. 17. Facial and gestural expressions.

Table 6
Contribution parameters from perception input to feeling.

Pleasure Sadness Fear Anger

People detected 0.1 '0.1 '0.2 '0.2
Distance to human 0.3 0 0.1 0
Human activity 0.2 0 0.1 0
Brightness 0.4 '0.2 '0.1 '0.1
Darkness '0.2 0.2 0.4 0.1
No people detected '0.1 0.2 0.03 0.01
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representation. In this graph, the fear value increased when the
room was dark (a). The happiness value increases and the fear val-
ue decreases when the person comes into the room and turns on
the light (b). When the person entered into the view, the happiness
value increased (c), however when the robot partner detected the
[stop] gesture, the anger value increased, on the contrary the hap-
piness value started to decrease (d).

8.3. Case study 3

In the case studies 1 and 2, based on the changes of the environ-
mental condition and human gesture in informationally structured
space, we realized the robot partner’s emotion building process.
Through the input data for the emotional model, the robot partner
can express its emotions based on the current condition. In this
experiment, as an information support system we realized multi-
modal communication between the robot partner and the human
based on environmental conditions. As shown in Fig. 22 we built
an environmental model of elderly people’s house for the experi-
ment. In this room, we installed SunSPOT in chair, toilet, and refrig-
erator. In addition, we also installed wireless optical oscillo-sensor
in the bed and Microsoft Kinect above the bookshelf.

The experiment is conducted to investigate the information
support by the robot partner based on human behavior. Starting
from getting up from the bed, sitting on the chair, going to the toi-
let and preparing breakfast. The snapshot of the experiment can be
seen in Fig. 23. The human behavior record which is saved in the
human state database is expressed in Fig. 24, where it can be seen

Fig. 18. Snapshots of the first experiment.

Fig. 19. The change of states in the first experiment.

Table 7
Contribution parameters from perception input to feeling and gesture .

Pleasure Sadness Fear Anger

People detected 0.1 '0.1 '0.2 '0.2
Distance to human 0.3 0 0.1 0
Human activity 0.2 0 0.1 0
Brightness 0.4 '0.2 '0.1 '0.1
Darkness '0.2 0.2 0.4 0.1
No people detected '0.1 0.2 0.03 0.01
Gesture (Bye Bye) '0.1 0.5 0.1 0
Gesture (Hello) 0.4 0 '0.1 '0.1
Gesture (Stop) '0.3 0.05 0.03 0.5
Gesture (Swing) 0.4 0 '0.1 '0.1

Fig. 20. Snapshots of the second experiment.
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that at (a) shows human when sleeping on the bed, (b) shows
human when getting up from the bed, (c) shows human when
walking around the room, and (d) shows human when sitting on
the chair. The robot partner uses this information as a reference

in conducting communication with the human. Fig. 25 shows the
sample of human behavior database. The information in this figure
is used to recognize the human’s state. Besides human state,
human behavior, human gesture, and robot emotion as the main

Fig. 21. The change of states in the second experiment.

Fig. 22. Experimental room.

Fig. 23. Snapshots of the third experiment.
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attributes, and the other attributes such as season, year, month,
day, week, and time (minutes) are used to recognize personal life
time and build the personal model of the human.

Fig. 26 shows data saving in the conversation log database dur-
ing the experiment. In order to conduct learning process in the
conversation process, human and environmental state connected
with time become the main attribute. For the time attribute, we
use season, year, month, day, week, and time (minutes). Mean-
while, human state, human behavior, human gesture, robot
motion, and robot action are used as the attributes to decide utter-
ances. For classifying the conversation contents, we define mode,
node1, node2, and content id for the attributes. The conversation
contents of the conversation log database is depicted in Fig. 27.

8.4. Discussions

Through the experimental results, we can conclude that, in the
case study 1, feeling is affected dominantly by the brightness of the
room. As the perception parameter value on brightness is high,
intuitively we could guess, that the brightness as well as the

darkness of the room will give important effect on the robot part-
ner’s feelings. On the other hand, although human movement and
distance also give some effect to the feeling, but still could not
replace the dominance of room brightness effect.

In the case study 2, basically the robot partner’s feelings are
affected by the room’s brightness. However, when the robot part-
ner recognized a particular human gesture, the dominance of the
room’s brightness is replaced by human gesture resulting in the
changing of the robot partner’s feeling. In the case study 3, the real-
ization of informationally structured space is conducted. Here, we
took the experiment for several days to investigate the human life
cycle activity. The information acquired from and outputted into
environment is saved in the database, and used for recognizing
the state and learning in the conversation process. In the result,
after recognizing the situation, the robot partner could conduct
suitable conversation with the human.

As mentioned in the introduction, there are some research
methods that aim similar goals as we also aim in this research.
For example Takemura and Ishii (2011) was focusing their research
on cognitive environment, while Shahdi and Bakar (2012) was

Fig. 24. Graph of human behavior log.

Fig. 25. Human behavior log.

Fig. 26. Conversation log in database.

Fig. 27. Conversation log.
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focusing theirs in human recognition technology. Meanwhile Bien
and Lee (2007) conducted their research which related to human
recognition and emotional consideration. In contrary, our proposed
method including the cognitive environment, human recognition,
and emotional consideration realizes the robot partner’s reaction
through various input data. For example, when the human gets
up from the bed, the robot partner with its environmental cogni-
tive ability for recognizing human condition gives some reactions
such as utterance and particular gesture to reinforce the utterance
contents. Moreover, with the combination of gesture recognition
and emotional model as we can see in the experimental result,
the communication between the robot partner and the human
can be realized in a more natural and interesting way. More details
about the comparison of the methods can be seen in Table 8.

9. Conclusion and future works

This paper discussed the actualization of natural communica-
tion between a robot partner and a human based on the applica-
tion of relevance theory in the mutual recognition space. In order
to realize this, we built the architecture in informationally struc-
tured space as the basis of our research along with the database
system, which supports the informationally structured space in
transferring data to and from the environment. While discussing
informationally structured space, we also explained the elements
constructed our system such as sensor network, web system, and
robot partner including gesture recognition and emotional model.
In further, the conversational architecture which allows the natural
communication to be realized was deeply discussed. This includes
the discussion of database structure and conversation selection
algorithm.

In terms of the theoretical contribution, the proposed system is
built based on four theories as follows: (a) Relevance Theory –
Realizing natural communication between human and robot is
the main focus of this paper. Natural communication can be real-
ized when robot can understand human intention or thought. We
implemented the theory of relevance proposed by Sperber and
Wilson (1995) to build mutual cognitive environment between
human and robot partner into our system, which called Informa-
tionally Structured Space to handle this problem. According to
Sperber and Wilson (1995), relevance theory is very useful to dis-
cuss the multimodal communication, where each person has his or
her own cognitive environment that make their communication
restricted. Therefore, usually humans use their utterances or ges-
tures to expand their cognitive environment by extracting person’s
attention into specific target object, event, or person. When
human’s cognitive environment became wider, they can share each
other intention or thought. The implementation of this theory into
our system can be observed in the structure of database. (b) Ras-
mussen’s Behavior Theory – For conducting daily conversation
with human, robot partner has to have enough knowledge and
contents. However, to get enough knowledge and contents, the
conversation system contents and task will become bigger. At this
state, flexibility and simplicity of the system become a new issue.

To deal with this, we proposed new conversation system architec-
ture based on Rasmussen’s behavior model. Using this model, we
divided the conversation into three types based on complexity.
(c) Computational Intelligence (Soft Computing) – In the gesture
recognition, we implemented structured learning involving grow-
ing neural gas for information extraction and spiking neural net-
work to recognize the gesture, and finally (d) Boltzmann
Selection – For acquiring non-monotonic or lively conversation
between human and robot partner we used Boltzmann selection
by controlling the value of temperature to perform word selection
when the robot partner communicates with the human.

In terms of practical implementation, the development of sen-
sor network installed in nursing home to support caregivers in con-
ducting monitoring for elderly people has been increased.
However, in order to give information support and encourage
elderly people for social activities, mutual cognitive environment
between the human and the robot must be built in order to realize
natural communication. The implementation of relevance theory
and Rasmussen’s model into this system has been discussed in
the previous section. The experimental results explained the capa-
bility of the proposed method to be applied in the real world. In
addition, since we introduced a low cost robot partner using
iPhone as a mainframe in the proposed system, this system can
be applied in the real world in a short time as an advanced elderly
people monitoring system.

There are few possible developments of our system to be
upgraded or adding some new features in order to improve it. Cur-
rently, we developed the communication between robot partner
and human using only English as user language. One of the possible
future work is extending the user language into several languages,
since we also conduct the research about cultural comparison in
Botzheim, Yusuf, Kubota, and Yamaguchi(2013). Secondly, we
build mutual cognitive environment named informationally struc-
tured space based on relevance theory. In the informationally
structured space, the change of environment and human states
effect the robot partner’s emotion and conversation system. In
the future work, in order to understand human behavior, we intend
to build mutual cognitive environment focused on human. The col-
lection data of human such as human state, life log and human
preferences will become important aspects. Moreover, we will also
extend the capability of sensor and robot partner. Beside these,
additional information such as location and furniture information
will be included. Using these extended information, we expect
new features such as (a) Elderly people can check their living con-
dition using visualization system built by using life log data in
informationally structured space. This information can also be
shared and used by the elderly people’s family and caregivers as
a remote monitor, (b) The upper feature leads to a feature in early
detection of the unusual life pattern or unusual behavior of elderly
people to acquire immediately assistance, (c) We will conduct the
integration and fusion between sensors to extend sensor capa-
bility. With this method, the sensor measurement error can be
avoided, which will raise the robustness, accuracy and efficiency
of the sensor. Additionally, using the visualization system based
on the sensor information, we can conduct the maintenance pro-
cess easily. Finally, with the extension of robot partner capability,
besides supporting in daily live conversation, robot partner can
also be applied as a recommender and reminder system.
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