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Fractional Differential Systems: A Fuzzy Solution
Based on Operational Matrix of Shifted Chebyshev

Polynomials and Its Applications
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Abstract—In this paper, a new formula of fuzzy Caputo
fractional-order derivatives (0 < v ≤ 1) in terms of shifted
Chebyshev polynomials is derived. The proposed approach intro-
duces a shifted Chebyshev operational matrix in combination with
a shifted Chebyshev tau technique for the numerical solution of
linear fuzzy fractional-order differential equations. The main ad-
vantage of the proposed approach is that it simplifies the problem
alike in solving a system of fuzzy algebraic linear equations. An
approximated error bound between the exact solution and the pro-
posed fuzzy solution with respect to the number of fuzzy rules
and solution errors is derived. Furthermore, we also discuss the
convergence of the proposed method from the fuzzy perspective.
Experimentally, we show the strength of the proposed method in
solving a variety of fractional differential equation models un-
der uncertainty encountered in engineering and physical phenom-
ena (i.e., viscoelasticity, oscillations, and resistor–capacitor (RC)
circuits). Comparisons are also made with solutions obtained by
the Laguerre polynomials and the fractional Euler method.

Index Terms—Chebyshev polynomials, fuzzy fractional differ-
ential equations (FFDEs).

I. INTRODUCTION

FRACTIONAL differential equation (FDE) is one of the
most important branches of fractional calculus, as it has

proven to be very suitable for modeling memory effects of var-
ious engineering applications, compared with the traditional
integer-order models [1]–[5]. Particularly, in the field of dy-
namical systems and control theory, many works had utilized an
FDE to study the anomalous behavior of dynamic systems. For
instance, Caputo and Mainardi [6] formulated a mathematical
model of viscoelasticity connecting the Hooke elastic element
and the Maxwell viscoelastic element based on a fractional-
order model; Bagley and Torvik [7] used fractional calculus to
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Fig. 1. Fort Point Channel Tunnel in Boston, 12 tons of concrete fell on a
car due to creep in the epoxy that was used to support anchoring bolts for the
ceiling panels.

construct stress–strain relationships for viscoelastic materials;
Diethelm and Luchko [8] employed an FDE to describe the pro-
cess of the solution of gas in a fluid; and Lin and Lee [9] and
Tavazoei [10] studied adaptive fuzzy sliding-mode control to
synchronize two different uncertain fractional-order time-delay
chaotic systems.

In the fuzzy domain, the study of fuzzy differential equations
(e.g., in this paper, we consider fuzzy fractional differential
equations—FFDEs) had created a suitable setting for mathemat-
ical modeling of real-world problems, in which uncertainties
or vagueness penetrate. This is in order to avoid the repetition
of Big Dig ceiling collapse incident, occurred on July 10,
2006.1 Based on the investigation, concrete ceiling panels in the
Boston’s Fort Point Channel were hung using bolts embedded
in epoxy (a type of polymer). Over time, the bolts pulled out
of the epoxy causing a three-ton panel to crash on the roadway.
The panel landed on a car carrying a young couple, killing the
female passenger and injuring the male driver. The epoxy used
was a viscoelastic material that deforms over time when a force
is applied to it, until it reaches an equilibrium state (creep). In
this case, the concrete panel weighed too much for the epoxy
and caused it to deform to the point of failure. The failure of
this panel set off a chain reaction that eventually led to 12 tons
of concrete falling to the roadway, as illustrated in Fig. 1. Had
engineers consider uncertainty and, at the same time, fully un-
derstood viscoelasticity, this incident might have been avoided.

1https://en.wikipedia.org/wiki/Big_Dig_ceiling_collapse
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In one of the earliest works, Agarwal, Lakshmikantham,
and Nieto [11] took the initiative and introduced fuzzy frac-
tional calculus (i.e., FFDEs) to handle the fractional-order
systems with uncertain initial values or uncertain relationships
between parameters. They considered the solution of FFDEs
under Riemann–Liouville H-differentiability. Using this new
concept, Arshad and Lupulescu [12] were pioneers to study
the existence of solution for a class of fuzzy fractional integral
equations, as well as the properties of Riemann–Liouville inte-
gral of fuzzy-valued functions under Riemann–Liouville gen-
eralized H-differentiability, which is a direct generalization of
the fractional Riemann–Liouville derivative using the Hukuhara
difference. Afterward, Allahviranloo, Salahshour, and Ab-
basbandy [13] employed the Riemann–Liouville generalized
H-differentiability in order to solve the FFDEs and presented
some new results under this notion.

Mazandarani and Vahidian Kamyad [14] introduced a
Caputo-type fuzzy fractional derivative to solve FFDEs. Re-
cently, Salahshour, Allahviranloo, and Abbasbandy [15] used
fuzzy Laplace transform in order to solve such problems an-
alytically, which was then followed up by Mazandarani and
Najariyan [16], [17] who introduced fuzzy Laplace transform
under type-2 fuzzy fractional differentiability. However, there
are some flaws associated with these aforementioned solutions.
In the former, as highlighted in [18], there is a limitation in the
Hukuhara difference, as it leads solutions with increasing length
of their support. In the latter, the Riemann–Liouville derivative
requires a quantity of the fractional derivative of unknown so-
lution at the initial point, and in the last one, the methods under
type-2 fuzzy sets theory will lead to an increase in the computa-
tional cost, although it is closer to the originality of the model.
It has very recently been introduced by Lupulescue [19], a gen-
eralization of the Hukuhara difference to develop a theory of
the fractional calculus for interval-valued functions, which was
a continuation of the concept proposed in [20].

At the same time, orthogonal functions have received notice-
able consideration in dealing with various problems. The main
advantage in using this method is that it simplifies the prob-
lem alike in solving a system of algebraic equations, leading
to simplify the original problem. In addition, it is proven that
accurate approximation can be achieved with relatively few de-
grees of freedom. The most popular orthogonal functions are
block-pulse, Legendre, Laguerre, Jacobi, and Chebyshev. Saa-
datmandi and Dehghan [21] introduced a shifted Legendre op-
erational matrix for fractional derivatives and applied it with tau
and collocation methods to find numerical solutions of multi-
term linear and nonlinear FDEs subject to initial conditions. The
author of [22]–[25] derived a new formula expressing explicitly
any fractional-order derivatives of shifted Chebyshev polyno-
mials of any degree in terms of shifted Chebyshev polynomials
themselves and used it with spectral methods to solve multi-
term linear and nonlinear FDEs. An extension to the tau method
to handle multiorder FDE variable coefficients using the shifted
Legendre Gauss-Lobatto quadrature is studied in [26]. Esmaeili,
Shamsi, and Luchko [27] introduced a collocation technique to
obtain the spectral solution with Müntz polynomials. Motivated
by these results, the authors of [28]–[30] presented the spec-
tral tau method for numerical solutions of FDEs using various

types of orthogonal polynomials. Comparing different types of
orthogonal polynomials, we observe that all of them have a com-
mon characteristic in that the function approximation is a series
approximation. The Chebyshev approximation, however, has an
additional distinct characteristic over the Walsh, block-pulse,
and Laguerre polynomials, as such the function approximation
is simultaneously an (almost) uniform approximation, i.e., the
errors are distributed nearly uniformly in the time interval of
interest. This characteristic is of importance in cases where it
is desirable that the error involves in the approximation is not
concentrated in certain portions in the time interval of interest,
but it is uniformly distributed over the interval [31]. However,
most of these solutions are based on a rigorous framework, that
is, they are often tailored to deal with specific applications and
are generally intended for small-scale fuzzy fractional systems.

In this paper, our aim is to derive an explicit formula for a
fuzzy fractional-order derivative in terms of shifted Chebyshev
polynomials introduced by Doha, Bhrawy, and Ezz-Eldien [25],
but in the fuzzy Caputo sense, i.e., we introduce a suitable way
to approximate a fuzzy solution for linear FFDEs, using the
shifted Chebyshev polynomials functions based on the fuzzy-
like residual of the problem. To this end, the Chebyshev op-
erational matrix (COM) is introduced in the derivation of the
proposed method. It is worth mentioning here that, although
other orthogonal bases such as the Jacobi polynomials [32]
present nice stability properties and are very useful in approxi-
mation, Chebyshev is more advantageous for practical compu-
tations on account of its intrinsic numerical stability [31]. In
addition, to get the acceptable accuracy using the orthogonal
polynomials such as the Laguerre and Jacobi, it needs to find
the optimized values of Jacobi or Laguerre parameters α and β,
while the Chebyshev or Legendre polynomials are not entangled
with this issue. As a resultant, it decreases the computational
time. Moreover, only a small number of shifted Chebyshev poly-
nomials are required to acquire convincing results, which has
been proven in Section III with applications in viscoelasticity,
oscillations, and resistor–capacitor (RC) circuits.

In summary, the major contributions of this paper are the
following.

1) We introduce a shifted COM of a fuzzy fractional Ca-
puto’s derivative, which is based on the Chebyshev tau
method to solve a linear FFDE numerically. The main
characteristic of this new technique is that it converts an
FFDE to a simple fuzzy algebraic equation. Then, one of
the advantages of the tau method lies in its accuracy for a
given number of unknowns. For problems whose solutions
are sufficiently smooth, they exhibit exponential rates of
convergence/spectral accuracy, and this has motivated us
to utilize this method to solve the FFDE model.

2) In the fuzzy algebraic system, the first row of the coeffi-
cients matrix is zero, and the last row is replaced by a suit-
able formulation of the initial conditions. Such a solution
has several advantages, for example, being a) nondiffer-
entiable, b) nonintegral, and ) can be easily implemented
on a computer system, because its structure is dependent
on the matrix operations only.

3) To date, and to the best of our knowledge, the proposed
approach (i.e., using COM) has not been explored widely
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to solve fuzzy mathematical models in terms of fractional
cases. Simulation results indicate that the proposed so-
lution is not only feasible, but also provides valuable
information for a number of applications in engineering
and physical phenomena (i.e., viscoelasticity, oscillations,
and RC circuits).

The rest of this paper is structured as follows. Section II
presents an introduction on the tau method for solving linear
FFDEs using the COM of a fuzzy fractional Caputo’s deriva-
tive. The upper bound of approximation error between the exact
and the proposed fuzzy solution is derived to confirm that the ap-
proximate solution is bounded and the method is convergent. In
Section III, we report our numerical findings and demonstrate
the strength of the proposed scheme by considering numeri-
cal simulations. In addition, in this section, we present some
mathematical models in the fuzzy sense to evaluate our tech-
nique when dealing with fuzzy real phenomena. Finally, conclu-
sion and some recommendations for future work are drawn in
Section IV.

II. PROPOSED METHOD

In this section, we detailed the proposed spectral solution for
the FFDE using the COM. Particularly, a spectral tau method
[22], [25] is presented to find the fuzzy approximate solutions
of the linear FFDE in terms of the operational matrices of the
fuzzy fractional Caputo’s derivative, based on the shifted Cheby-
shev polynomials in the interval [0,1]. This is unlike Ahmadian,
Suleiman, Salahshour, and Baleanu [32] who employed the tau
method for the solution of the FFDE. In their work, the cor-
responding Jacobi functions are not a good choice because in
our paper, we deal with two crisp ordinary differential equation
systems transfer from the assumed FFDE under fuzzy differen-
tiability, which should be solved together to achieve the fuzzy
approximate solution. If we employ the Jacobi functions, we
will have to find the optimized values of the Jacobi parameters
to obtain the lowest errors, and this will lead to high computa-
tional time. With this, we deduce that the Jacobi functions are
not a cost-effective choice for the fuzzy cases.

In contrast, the main advantage of our new technique using the
shifted Chebyshev polynomials in the interval [0,1] is that only a
small number of the shifted Chebyshev polynomials are required
and the good accuracy will be acquired in one-time program
running. Thus, it greatly simplifies the problem and reduces the
computational costs. The solution is expressed as a truncated
Chebyshev series, and therefore, it can be easily evaluated for
arbitrary values of time using any computer program without
any computational effort. In this paper, we concentrate our study
on nonperiodic fuzzy problems, and therefore, Chebyshev series
expansions fit best in this practical requirement [33].

A. Chebyshev Approximation of a Fuzzy Function

First, we introduce some notations that will be used later in
the paper.

1) LE
p (a, b), 1 ≤ p < ∞ is the set of all fuzzy-valued

measurable functions f on [a, b], where ‖f‖p =
(
∫ 1

0 (d(f(t)), 0))pdt)
1
p for p < ∞.

2) CE(a, b) is a space of fuzzy-valued functions, which are
continuous on [a, b].

3) CE
n (a, b) indicates the set of all fuzzy-valued functions,

which are continuous up to order n.
In order to obtain the approximation of a fuzzy function ac-

cording to the shifted Chebyshev polynomials (37), we present
some key definitions. For more details of the approximation of
a fuzzy-valued function, see [34] and [35].

Let us consider u ∈ C(J, E) ∩ L1(J, E), and that the shifted
Chebyshev polynomial T ∗

i (x) is a real-valued function over
[0,1]; then, we aim to find the fuzzy approximate function,
uN (x) : R �→ E, which can be stated similar to the definition
presented in the crisp context [22], [23], as

u(x) 
 uN (x) =
+∞∑

i=0

•ci � T ∗
i (x)

where the fuzzy coefficients ci are given as

ci =
1
hi

∫ 1

0
u(x) � T ∗

i (x) � w(x)dx, i = 0, 1, . . . (1)

in which w(x) = 1√
x−x2 , T ∗

i (x) has the similar definition to the
shifted Chebyshev polynomials presented in the Appendix, and∑ • denotes a sum with respect to ⊕ in E. In the remainder
of this section, we will describe the procedure that leads to
achieve the fuzzy approximate solution and validate the method
by analyzing the convergence and several numerical cases.

Practically, only the first (N + 1) terms of the shifted Cheby-
shev polynomials are considered, and therefore, we have

u(x) 
 uN +1(x) =
N∑

i=0

•ci � T ∗
i (x) = CT � Φ(x). (2)

The fuzzy shifted Chebyshev coefficient vector CT and shifted
Chebyshev function vector Φ(x) are described as

CT = [c0 , c2 , . . . , cN ]

Φ(x) = [T ∗
0 (x), T ∗

1 (x), . . . , T ∗
N (x)]T . (3)

We can specify the fuzzy approximate function uN +1(x) based
on the lower and upper functions as follows.

Definition 2.1: Let u ∈ C(J, E) ∩ L1(J, E); the approxima-
tion fuzzy-valued function uN +1(x) in the parametric form is

u(x, r) 
 uN +1(x, r) (4)

=

[
N∑

i=0

ci,−(r)T ∗
i (x),

N∑

i=0

ci,+(r)T ∗
i (x),

]

, 0 ≤ r ≤ 1. (5)

B. Operational Matrix of Fuzzy Caputo Derivative

In this section, generalization of the operational matrix of
Chebyshev functions is derived based on the Caputo derivative.
Afterward, the error function of the fuzzy Caputo fractional
derivative operator is provided to depict that the fuzzy approx-
imate function is in good agreement with the fuzzy Caputo
differentiable function. For more details on the case of fuzzy
and nonfuzzy context, see [22], [25], and [36].

Theorem 2.1 (see [24] and [25]): The approximation of the
Caputo derivative by means of shifted Chebyshev polynomials
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for 0 < v ≤ 1 can be represented as

cDvT ∗
i (x) = i

i∑

k=�v�
(−1)i−k (i + k − 1)!22kk!

(i − k)!(2k)!Γ(k − v + 1)
xk−v

i = �v� , �v� + 1, ...., N.

As stated in [24], the COM based on their Chebyshev poly-
nomials is given by

DvΦ(x) 
 D(v )Φ(x) (6)

where D(v ) is the (N + 1)-square operational matrix of the
Chebyshev function based on Caputo differentiability and
DvΦ(x) ∈ C(J). Therefore, using (6) and Theorem 2.1, we
can approximate the Caputo’s derivative of the fuzzy approxi-
mation function as

Dvu(x) 
 D(v )uN +1(x)

=
N∑

i=0

•ci � D(v )T ∗
i (x) = CT � D(v )Φ(x). (7)

C. Error Analysis

Now, in order to evaluate the error bound of the fuzzy approx-
imate function, we introduce the following lemma. This lemma
shows that the approximation converges of the Chebyshev func-
tions to function f in a deterministic case.

Lemma 2.1: Let the function f : [x0 , 1] → R is N times con-
tinuously differentiable for x0 > 0, f ∈ CN [x0 , 1], and TN =
Span{T ∗

i (x)}N
i=0 . If fN = CT Φ(x) described in (41) is the best

approximation to f from TN , then the error bound can be pre-
sented as

‖ f(x) − fN +1(x)‖w ≤ MSN

(N)!
√

π

where M = maxx∈[x0 ,1]f
(N )(x), S = max{1 − x0 , x0}, and ‖

f ‖w = (
∫ 1

0 f(x)2w(x)dx)1/2 [37].
Proof: See Appendix A. �
Theorem 2.2 provides an upper error bound for the fuzzy

approximation function based on the shifted Chebyshev poly-
nomials. Based on this theorem, it can be confirmed that the
fuzzy approximate function is convergent to the main function.

Theorem 2.2: Let the function u ∈ C(J, E) ∩ L1(J, E) be
continuously fuzzy differentiable for x0 > 0, u ∈ C([x0 , 1], E),
and TN = Span{T ∗

0 (x), T ∗
1 (x), . . . , T ∗

N (x)}. If uN = CT �
Φ(x) is the best fuzzy approximation to u(x) from TN , then
the error bound can be represented as

D(u(x), uN (x)) ≤ Q(r)SN

(N)!
√

π

where Q(r) = maxx∈[x0 ,1]{M−(r),M+(r)}, S = max{1 −
x0 , x0}, and r ∈ [0, 1].

Proof: Considering Lemma (2.1), the proof is
straightforward. �

Now, let us first define Ev as

Ev = |DvΦ(x) − D(v )Φ(x)| = [E0,v , E1,v , . . . , EN,v ]T

where

Ek,v = |DvT ∗
k (x) −

N∑

j=0

D
(v )
kj T ∗

j (x)|, k = 0, 1, . . . , N.

Lemma 2.2: Let the error function of the Caputo fractional
derivative operator for Chebyshev polynomials Ei,α : [x0 , 1] →
R is N + 1 times continuously differentiable for 0 < x0 ≤ x,
x ∈ (0, 1]. In addition, Ei,v ∈ CN +1[x0 , 1] and v ≤ N + 1, and
therefore, the error bound can be represented as

‖ Ei,v ‖w≤ |Γ(i + 1)|
|Γ(1 − v)|

MSN +1

(N + 1)!
x−v

0
√

π.

Proof: See Appendix B. �
Thus, the maximum norm of error vector Ev is achieved as

‖ Ev ‖∞≤ |Γ(N + 2)|
|Γ(1 − v)|

MSN +1

(N + 1)!
x−v

0
√

π

where ‖ Ev ‖∞= maxi=0,1,...,N |Ei,v |.

D. Case Study: Walkthrough of Our Proposed fuzzy Fractional
Differential Equation Solution

The main goal of this section is to show the steps of our pro-
posed method in solving the linear FFDE. We derive a fuzzy-like
residual of the approximate problem based on Chebyshev func-
tions. Then, using the tau method, N + 1 fuzzy algebraic linear
equations are derived and are solved by finding the unknown
fuzzy coefficients of the approximate fuzzy solution. Here, the
problem has reduced from an original fuzzy fractional problem
to a fuzzy algebraic linear equations system, which is much
easier to handle.

Consider the following linear FFDE:
{

(cDv
0+ y)(x) + y(x) = f(x), 0 < v ≤ 1

y(0) = y0 ∈ E
(8)

where y ∈ C(J, E) ∩ L1(J, E) is a continuous fuzzy-valued
function, cDv

0+ indicates the fuzzy Caputo’s fractional deriva-
tive of order v, and f(x) : [0, 1] �→ E.

Let 〈., .〉E denote the fuzzy-like inner product over the
weighted XE = L2

w (J, E). It can be presented in the r-cut form
as follows:

[〈p, q〉E]r =
[〈

pr
−, qr

−
〉

w
,
〈
pr

+ , qr
+
〉

w

]

where
〈
pr
−, qr

−
〉

w
and
〈
pr

+ , qr
+
〉

w
are inner products over the

weighted XR = L2
w (J, R). For more details, see Appendix D

(Lemma 4.1).
As in a typical tau method [37], [38], we generate N fuzzy

linear equations by applying

〈RN (x, r), T ∗
i (x)〉E = 0̃, i = 0, 1, . . . , N − 1, r ∈ [0, 1]

(9)
where 〈RN (x, r), T ∗

i (x)〉E = [(FR)
∫ 1

0 RN (x, r) � T ∗
i (x) �

w(x)dx], and RN is the fuzzy-like residual operator for (8),
which is defined in the matrix operator form of

RN (x, r) = [RN (x, r), RN (x, r)]
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where
{

RN (x, r) = CT (r)(D(v )Φ(x) + Φ(x)) − FT (r)Φ(x)

RN (x, r) = C
T
(r)(D(v )Φ(x) + Φ(x)) − F

T
(r)Φ(x).

(10)
Now, regarding to the relation (9) and using the following

statements:

yN (x, r) =
N∑

j=0

cj (r)T ∗
j (x)

fk (r) = 〈f(x, r), T ∗
k (x)〉w , k = 0, 1, . . . , N − 1

f(r) = (f0(r), f1(r), . . . , fN (r), y0(r))T

y(0, r) = y0(r)

we have

〈RN (x, r), T ∗
k (x)〉E

=
[∫

P 1

RN (x, r)T ∗
k (x)w(x)dx +

∫

P 2

RN (x, r)T ∗
k (x)w(x)dx,

∫

P 1

RN (x, r)T ∗
k (x)w(x)dx +

∫

P 2

RN (x, r)T ∗
k (x)w(x)dx

]

=
[∫

P 1

(CT(r)D(v )Φ(x)+CT (r)Φ(x)−F T (r)Φ(x))T ∗
k (x)w(x)dx

+
∫

P 2

(C
T

(r)D(v )Φ(x) + C
T

(r)Φ(x) − F
T

(r)Φ(x))T ∗
k (x)w(x)dx,

∫

P 1

(C
T
(r)D(v )Φ(x)+C

T
(r)Φ(x)−F

T
(r)Φ(x))T ∗

k (x)w(x)dx

+
∫

P 2

(CT (r)D(v )Φ(x)+ CT (r)Φ(x)− F T (r)Φ(x))T ∗
k (x)w(x)dx

]

= 0̃, k = 0, 1, . . . , N − 1.

Therefore, we obtain

〈RN (x, r), T ∗
k (x)〉E =

[∫

P 1

CT (r)D(v )Φ(x)T ∗
k (x)w(x)dx

+
∫

P 2
C

T
(r)D(v )Φ(x)T ∗

k (x)w(x)dx,

∫

P 1

C
T
(r)D(v )Φ(x)T ∗

k (x)w(x)dx

+
∫

P 2

CT (r)D(v )Φ(x)T ∗
k (x)w(x)dx

]

+
[∫

P 1

CT (r)Φ(x)T ∗
k (x)w(x)dx +

∫

P 2

C
T
(r)Φ(x)T ∗

k (x)w(x)dx,

∫

P 1

C
T
(r)Φ(x)T ∗

k (x)w(x)dx +
∫

P 2

CT (r)Φ(x)T ∗
k (x)w(x)dx

]

=
[∫

P 1

F T (r)Φ(x)T ∗
k (x)w(x)dx +

∫

P 2

F
T
(r)Φ(x)T ∗

k (x)w(x)dx,

∫

P 1

F
T
(r)Φ(x)T ∗

k (x)w(x)dx +
∫

P 2

F T (r)Φ(x)T ∗
k (x)w(x)dx

]

for k = 0, 1, . . . , N − 1 and r ∈ [0, 1]. Therefore, we can
rewrite the above results in a compact form as
∫ 1

0
CT (r)D(v )Φ(x)T ∗

k (x)w(x)dx +
∫ 1

0
CT (r)Φ(x)T ∗

k (x)w(x)dx

=
∫ 1

0
F T (r)Φ(x)T ∗

k (x)w(x)dx

for k = 0, 1, . . . , N − 1 and r ∈ [0, 1].
Regarding (2) and (7), we have
∫ 1

0
D(v )yN (x, r)T ∗

k (x)w(x)dx +
∫ 1

0
yN (x, r)T ∗

k (x)w(x)dx

=
∫ 1

0
f(x, r)T ∗

k (x)w(x)dx, k = 0, 1, . . . , N − 1.

Using the definition of fuzzy-like inner product, we have
〈
D(v )yN (x, r), T ∗

k (x)
〉

E
+ 〈yN (x, r), T ∗

k (x)〉E
= 〈f(x, r), T ∗

k (x)〉E , k = 0, 1, . . . , N − 1 (11)

and r ∈ [0, 1]. Then, in order to acquire the approximation
yN (x, r) using the shifted Chebyshev tau approximation, we

should find the unknown vector CT = [CT (r), C
T
(r)]. There-

fore, (11) can be stated as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j=0
cj (r)

[〈
D(v )T ∗

j (x), T ∗
k (x)
〉

w
+
〈
T ∗

j (x), T ∗
k (x)
〉

w

]

= 〈f(x, r), T ∗
k (x)〉w , k = 0, 1, . . . , N − 1,

j = 0, 1, . . . , N, r ∈ [0, 1]
N∑

j=0
cj (r)T ∗

j (0) = y0(r).

(12)
Then, using the matrix form and their defined elements, de-

scribed in Appendix C, (12) can be written in the following
matrix form:

(A + μB)C = f . (13)

Finally, system (13) can be solved based on the following lower–
upper representation by any direct or numerical method [39],
[40]:

{
(A + B)C = f

(A + B)C = f .

III. APPLICATIONS OF FUZZY FRACTIONAL

DIFFERENTIAL MODEL

In this section, we bring forth the technical correctness of
the proposed method with some numerical simulations in terms
of few possible uses in engineering applications. The absolute
errors of the problems in different conditions are provided to
demonstrate the effectiveness of the COM with the tau method
based on the Caputo-type fuzzy fractional differentiability of
order 0 < v ≤ 1. In addition, in order to verify the reliability
and accuracy of the proposed method, our numerical results are
compared with the fuzzy fractional Euler method [14] and the
tau method with the Laguerre operational matrix (LOM) [28]
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as the representative of the orthogonal functions (i.e., Walsh
functions, Block-Puls functions, and Laguerre functions), which
have common characteristics in that the derived operational ma-
trices algorithms are similar.

Note that the accuracy of the methods is compared by
computing the absolute errors E(t, r) = |y

a
(t, r) − Y e(t, r)|,

E(t, r) = |ya(t, r) − Y e(t, r)| (for a constant t and various val-
ues of r), where Ye(t, r) = (Y e(t, r), Y e(t, r)) is the known
exact solution and ya(t, r) = (y

a
(t, r), ya(t, r)) is the approxi-

mate solution. In this regard, the absolute errors of the proposed
method, the tau method with Laguerre functions, and the frac-
tional Euler method are Ec , El , and Eu , respectively.

A. Application 1—Viscoelasticity

This application shows a possible use of the fuzzy fractional
differential model in the field of viscoelasticity. As a definition,
viscoelasticity is the property of materials that exhibit both vis-
cous and elastic characteristics when undergoing deformation.
This results in time-dependent behavior, which means that a
material’s response to deformation or force may change over
time. Typical engineering materials have the same response
to a force or deformation no matter how fast you apply the
force/deformation or how long the force/deformation is present.
It is very important for engineers to understand viscoelasticity
if they are going to design devices that use or interact with poly-
mers or biological materials so that the Big Dig ceiling collapse
incident as explained in Section I could be avoided.

Formally, we consider viscoelasticity under uncertainty rep-
resented by fuzzy-valued functions. Let us consider the relation-
ships between stress and strain for solids (Hooke’s law) and for
Newtonian fluids (Newton’s law), respectively, as follows:

⎧
⎪⎨

⎪⎩

σ(t) = Ee(t)

σ(t) = η
d

dt
e(t).

(14)

In (14), E and η stand for the spring’ constant and the viscosity,
respectively. On the other hand, noting that stress is propor-
tional to the zeroth derivative of strain for solids and to the first
derivative of strain for fluids, it is natural to suppose that for “in-
termediate” materials, stress may be proportional to the stress
derivative of “intermediate” (noninteger) order:

σ(t) = ηDv
t e(t), (0 < v ≤ 1) (15)

where E and v are material-dependent constants.
The Hooke’s law (14) is a one-parameter model, while the

Scott Blair law (15) is a two-parameter model (i.e., the parame-
ters arc η and v), which can be further generalized by adding fur-
ther terms on both sides, containing arbitrary-order derivatives
of stress and strain. This leads to a three-parameter generalized
Voigt model

σ(t) = Ee(t) + ηDve(t) (16)

which describes the motion of a rigid plate immersed in a New-
tonian fluid.

Now, in order to study the mentioned problem in a real
case, we apply the fuzzy initial value e0 , the fuzzy-valued

function σ(t), and the concept of Caputo’s H-differentiability
for fractional derivative of (cDv

0+e)(t) and generalized
H-differentiability [18] for first-order derivative of e(t), e′(t).

Let us consider the fuzzy model of the motion of a rigid plate
immersed in a Newtonian fluid as follows:
⎧
⎪⎨

⎪⎩

c Dv
0+ e(t) + e(t) = t4 − 1

2
t3 − 3

Γ(4 − v)
t3−v +

24
Γ(5 − v)

t4−v

e(0, r) = [−1 + r, 1 − r], 0 < v ≤ 1, 0 ≤ r ≤ 1, t ∈ [0, 1]
(17)

in which e ∈ C(J, E) ∩ L1(J, E) is a continuous fuzzy func-
tion, cDv

0+ indicates the fuzzy Caputo’s fractional derivative of
order v, and E = η = 1.

According to the definition of c [1 − v]−differentiability and
Theorem 4.1, we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(c Dv
0+ e−)(t, r) + e−(t, r) = t4 − 1

2
t3 − 3

Γ(4 − v)
t3−v

+
24

Γ(5 − v)
t4−v

e−(0, r) = −1 + r, 0 < v ≤ 1, 0 ≤ r ≤ 1, t ∈ [0, 1]

(18)

and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(c Dv
0+ e+ )(t, r) + e+ (t, r) = t4 − 1

2
t3 − 3

Γ(4 − v)
t3−v

+
24

Γ(5 − v)
t4−v

e+ (0, r) = 1 − r, 0 < v ≤ 1, 0 ≤ r ≤ 1. t ∈ [0, 1]

(19)

with the exact solution as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−(t, r) = (−1 + r)Ev,1 [−tv ] +
∫ t

0 (t − x)v−1

Ev,v [−(t − x)v ]σ(x)dx, 0 ≤ r ≤ 1

e+(t, r) = (1 − r)Ev,1 [−tv ] +
∫ t

0 (t − x)v−1

Ev,v [−(t − x)v ]σ(x)dx, 0 ≤ r ≤ 1

(20)

where σ(x) = x4 − 1
2 x3 − 3

Γ(4−v ) x
3−v + 24

Γ(5−v ) x
4−v .

Let N = 2 and taking into account (18) and (19), we may
write the approximate solution and the right-hand side as

e(t, r) 
 eN +1(t, r) =
2∑

i=0

ci(r)T ∗
i (t) = CT (r)Φ(t)

g(t) 

2∑

i=0

giT
∗
i (t) = GT Φ(t).

Here, we have

D0.85 =

⎛

⎜
⎝

0 0 0

1.7949 0.4682 −0.1851

−0.1221 5.6769 1.1000

⎞

⎟
⎠ , G =

⎛

⎜
⎝

g0

g1

g2

⎞

⎟
⎠ .

Using (9), (12), and (13), we can derive a fuzzy algebraic
linear equation system, and solving the aforesaid system, the
following values for the unknown fuzzy coefficients cr

i for
the lower and upper bound of the fuzzy approximate function
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TABLE I
COMPARISON OF THE ABSOLUTE ERRORS (Ec , El , AND Eu ) FOR VISCOELASTICITY WITH α = 0.85

r Y e (1; r) E c (1; r) E l (1; r)[28] E u (1; r)[14] Y e (1; r) E c (1; r) E l (1; r)[28] E u (1; r)[14]

0 0.11876 5.11991e-4 1.03903e-3 3.49858e-1 0.88123 5.13990e-4 1.03903e-3 2.89274e-1
0.1 0.15689 4.60692e-4 9.35134e-4 3.46828e-1 0.84310 4.62691e-4 9.35134e-4 2.92303e-1
0.2 0.19501 4.09393e-4 8.31230e-4 3.43799e-1 0.80498 4.11392e-4 8.31230e-4 2.95332e-1
0.3 0.23313 3.58094e-4 7.27326e-4 3.40770e-1 0.76686 3.60093e-4 7.27326e-4 2.98361e-1
0.4 0.27126 3.06794e-4 6.23422e-4 3.37741e-1 0.72873 3.08794e-4 6.23422e-4 3.01391e-1
0.5 0.30938 2.55495e-4 5.19518e-4 3.34712e-1 0.69061 2.57495e-4 5.19518e-4 3.04420e-1
0.6 0.34750 2.04196e-4 4.15615e-4 3.31683e-1 0.65249 2.06196e-4 4.15615e-4 3.07449e-1
0.7 0.38563 1.52897e-4 3.11711e-4 3.28653e-1 0.61436 1.54897e-4 3.11711e-4 3.10478e-1
0.8 0.42375 1.01598e-4 2.07807e-4 3.25624e-1 0.57624 1.03597e-4 2.07807e-4 3.13507e-1
0.9 0.46187 5.02993e-5 1.03903e-4 3.22595e-1 0.53812 5.22988e-5 1.03903e-4 3.16537e-1
1 0.50000 9.99757e-9 9.54645e-7 3.19566e-1 0.50000 9.99757e-9 9.54645e-7 3.19566e-1

Fig. 2. Viscoelasticity: Absolute errors of the proposed method, Ec (1; r) (a) for different values of Caputo derivative v and (b) for different values N .

are obtained:

c0 ,−(0.1) = −0.4458, c1 ,−(0.1) = 0.5135, c2 ,−(0.1) = 0.1992

c0 ,+ (0.1) = 0.6734, c1 ,+ (0.1) = −0.0274, c2 ,+ (0.1) = 0.0593.

It can be seen that the coefficient c0.1
1 does not satisfy the fuzzy

condition for specific cut. Therefore, in this situation, we con-
sider fuzzy weak solution. In fact, by changing the lower and
upper values, a new approximate solution can also be obtained.
Noticing that, however, this strategy will lead to more errors,
which is one of the main differences between our proposed point
of view and conventional approaches that investigated the solu-
tion by just using the lower and upper approximations without
considering the fuzzy condition. Therefore, we can rewrite

e−(t, 0.1) =
(
−0.4458 −0.0274 0.0593

)

⎛

⎜
⎜
⎝

1

−1 + 2t

1 − 8t + 8t2

⎞

⎟
⎟
⎠

e+ (t, 0.1) =
(

0.6734 0.5135 0.1992
)

⎛

⎜
⎜
⎝

1

−1 + 2t

1 − 8t + 8t2

⎞

⎟
⎟
⎠ .

Fig. 3. Viscoelasticity: Ec (t; r) for r ∈ [0, 1] and t ∈ [0, 1] with v = 0.85
and N = 10.

Indeed, we just change the position of lower and upper func-
tions for coefficients. In fact, T ∗

i (t) do not have the same sign
in their domains. Therefore, we just check at the end of approx-
imation that whether e−(t, 0.1) is less than e+(t, 0.1) or not. In
fact, we do it for obtaining better solution, i.e., lower errors.

Remark 3.1: In general, the analytical solution of an FFDE
is hard or impossible to obtain, even for the simplest FFDE
cDv

0+y(t) = −y(t). Thus, it is important and challenging to find
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Fig. 4. Profiles of (a) the exact solution and (b) the fuzzy solution of the motion model of a rigid plate immersed in a Newtonian fluid with v = 0.85 and N = 8.

some more suitable and better accuracy methods in the study
of numerical simulations of FFDE due to various applications
of FDE discovered in physical and engineering fields in recent
years. However, this issue is even a fresh and prominent branch
in FDE field in the deterministic concept.

In Table I, the absolute errors of the proposed method are
provided in comparison with the absolute errors of LOM using
the tau method [28] and the fractional Euler method [14] at
x = 1. It can be noticed that the proposed method achieves
a well approximation with the exact solution only using a few
terms of shifted Chebyshev polynomials (N = 8). Table I shows
that the fractional Euler method [14] has a low accuracy, and it
is not a good method for complicated FFDE models. Moreover,
a comparison is made between the proposed method and the
Leguerre function [28] with the same number of functions. Yet,
our method not only has superior accuracy, but is better at the
end points of r-cuts as well.

Fig. 2(a) exhibits Ec(1; r) for different values of the fuzzy
Caputo’s fractional derivative. Note that as v approaches 1,
the numerical solution converges to the analytical solution of
integer-order fuzzy differential equation (i.e., the error decreases
gradually). Fig. 2(b) depicts Ec(1; r) for the different values of
N . As can be seen, with the increasing value of the fractional
derivative, the absolute error is decreasing. It is important to note
that this behavior does not happen with the growing number of
Chebyshev functions, since the proposed method approximates
the solution uniformly.

The analytical solution is presented in Fig. 4(a) for v = 0.85
defined on the domain t = [0, 1] and r ∈ [0, 1]. The fuzzy
approximate solution for (17) is obtained and displayed in
Fig. 4(b). As illustrated in Figs. 3 and 4, it is clear that the approx-
imate solution is very accurate at all interval points, specifically
near the beginning and end points. Nonetheless, the profiles of
Fig. 4(a) and (b) are almost the same.

Although the implementation of [14] is much simpler than our
proposed method, it turns out that the fractional Euler method
is not a good selection of these type of FDEs, especially when
we require higher accuracy. As shown in Table II, it can be

TABLE II
VISCOELASTICITY: COMPARISON OF THE MAXIMUM ABSOLUTE ERROR VERSUS

CPU TIME (SECONDS) WITH v = 0.85

Methods Max (E c (1; r)) CPU time (Seconds)

Proposed method 3.0969e-4 7.7790
[14] 3.4985e-1 0.0994
[28] 8.6576e-3 13.5102

noticed that our proposed method can obtain the solution with
the functions number N = 10, and the CPU time on an Intel
(Core i7-3770) 3.40-GHz processor is 7.7790 s and the maxi-
mum Ec(1; r) is 3.0969e-4. With the same number of Laguerre
functions (i.e., N = 10), Bhrawy et al. [28] could only achieve
Max(Ec(1; r)) = 8.6576e-3 and the CPU time is 13.5102 s.
Clearly, the latter solution’s CPU time is higher than our pro-
posed, while the maximum absolute error is also much lower.
This has two important reasons. First, let Dl and Dc be the
derivative operational matrices for the Laguerre and Chebyshev
functions, respectively. In deriving Dl , only one nonzero term
is truncated, but this nonzero term is always equal to −1, inde-
pendently of the size of Dl . In Dc , only one nonzero term is
truncated, but this term diminishes as the size of Dc becomes
large, which can affect the global error. Second, the integration
interval for the orthogonal calculations and the inner product re-
lated to (9) is [0,∞), which can increase the computation time
considerably, especially for the problems that a trigonometric
functions is included, while for the Chebyshev polynomials, it
is [0, 1].

B. Application II: Oscillation

Harmonic oscillator, given by a linear differential equation
of second order with constant coefficients, is a cornerstone of
the classical mechanics. Presently, this fundamental conception
has the widest origin of physical, chemical, engineering appli-
cations and needs no introduction. Its success mainly rests on its
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TABLE III
OSCILLATION: COMPARISON OF THE ABSOLUTE ERRORS (Ec , El , AND Eu ) WITH v = 0.95

r Y e (1; r) E c (1; r) E l (1; r)[28] E u (1; r)[14] Y e (1; r) E c (1; r) E l (1; r)[28] E u (1; r)[14]

0 −0.18581 2.15567e-5 2.06735e-3 5.17973e-2 0.55733 2.15150e-5 3.34326e-3 1.99488e-2
0.1 −0.14865 1.94031e-5 1.79682e-3 4.82100e-2 0.52017 1.93614e-5 3.07273e-3 1.63615e-2
0.2 −0.11149 1.72496e-5 1.52629e-3 4.46227e-2 0.48301 1.72078e-5 2.80220e-3 1.27742e-2
0.3 −0.07434 1.50960e-5 1.25576e-3 4.10354e-2 0.44586 1.50542e-5 2.53167e-3 9.18696e-3
0.4 −0.03718 1.29424e-5 9.85233e-4 3.74480e-2 0.40870 1.29006e-5 2.26114e-3 5.59964e-3
0.5 −0.00002 1.07888e-5 7.14702e-4 3.38607e-2 0.37154 1.07470e-5 1.99060e-3 2.01233e-3
0.6 0.03713 8.63524e-6 4.44171e-4 3.02734e-2 0.33438 8.59348e-6 1.72007e-3 1.57497e-3
0.7 0.07428 6.48165e-6 1.73639e-4 2.66861e-2 0.29723 6.43989e-6 1.44954e-3 5.16228e-3
0.8 0.11144 4.32806e-6 9.68912e-5 2.30988e-2 0.26007 4.28629e-6 1.17901e-3 8.74959e-3
0.9 0.14860 2.17447e-6 3.67422e-4 1.95115e-2 0.22291 2.13270e-6 9.08484e-4 1.23369e-2
1 0.18576 2.08802e-8 6.37953e-4 1.59242e-2 0.18576 2.08802e-8 6.37953e-4 1.59242e-2

Fig. 5. Oscillation: Absolute errors of the proposed method, Ec (1; r) (a) for different values of Caputo derivative v and (b) for different values N .

universality, and its simplicity gives boundless intrinsic capabil-
ities for sweeping generalization. Suffice it to recall the passage
from the language of functions in phase space to operators in
Hilbert space so that the oscillatory model came strongly in
the quantum theory. Therefore, the fractional calculus has also
made an important contribution to this way. Here, we consider
the fractional oscillator to be a generalization of the conven-
tional linear oscillator. Let us consider the fractional oscillation
equation with fuzzy initial conditions as
{

cDv
0+y(x) + y(x) = xe−x

y(0, r) = [−1 + r, 1 − r], 0 < v ≤ 1, 0 ≤ x ≤ 1
(21)

where y ∈ C(J, E) ∩ L1(J, E) is a continuous fuzzy set-value
function, and cDv

0+ indicates the fuzzy fractional derivative or-
der of Caputo type.

With respect to Definition 4.6(i) and Theorem 4.1, the para-
metric form of (21) can be obtained as
{

(cDv
0+y−)(x, r) + y−(x, r) = xe−x

y−(0, r) = −1 + r, 0 < v ≤ 1, 0 ≤ x ≤ 1
(22)

and
{

(cDv
0+y+)(x, r) + y+(x, r) = xe−x

y+(0, r) = 1 − r, 0 < v ≤ 1, 0 ≤ x ≤ 1
(23)

Fig. 6. Oscillation: Ec (t; r) for r ∈ [0, 1] and x ∈ [0, 1], v = 0.95.

with the exact solution as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y−(x, r) = (−1 + r)Ev,1 [−xv ] +
∫ x

0 (x − t)v−1

Ev,v [−(x − t)v ]te−tdt, 0 ≤ r ≤ 1

y+(x, r) = (1 − r)Ev,1 [−xv ] +
∫ x

0 (x − t)v−1

Ev,v [−(x − t)v ]te−tdt, 0 ≤ r ≤ 1

(24)

where Ev,v (x) =
∑∞

k=0
xk

Γ(vr+v ) is the generalized Mittag–
Leffler function. As stated in Remark 3.1 and (24), it is clear
that the analytical solution of (21) is very complicated and hard



AHMADIAN et al.: FRACTIONAL DIFFERENTIAL SYSTEMS: A FUZZY SOLUTION BASED ON OPERATIONAL MATRIX 227

Fig. 7. Profiles of (a) the exact solution and (b) the fuzzy solution of fractional oscillation equation with fuzzy initial conditions with v = 0.95 and N = 12.

TABLE IV
OSCILLATION: COMPARISON OF THE MAXIMUM ABSOLUTE ERROR VERSUS

CPU TIME (SECONDS) WITH v = 0.85

Methods Max ( E c (1; r)) CPU time (seconds)

Proposed method 3.1001e-4 4.2987
[14] 4.3741e-2 0.01243
[28] 7.8743e-3 8.7836

TABLE V
RC CIRCUIT: COMPARISON OF THE ABSOLUTE ERRORS (Ec , El , AND Eu )

WITH α = 0.98 AND N = 10

r Y e (0.008; r) E c (0.008; r) E l (0.008; r)[28] E u (0.008; r)[14]

0 0.00421 1.55135e-3 5.08708e-3 9.17482e-1
0.1 0.00430 1.55137e-3 5.08403e-3 8.25748e-1
0.2 0.00439 1.55138e-3 5.08098e-3 7.34014e-1
0.3 0.00448 1.55140e-3 5.07794e-3 6.42279e-1
0.4 0.00458 1.55142e-3 5.07489e-3 5.50545e-1
0.5 0.00467 1.55143e-3 5.07184e-3 4.58810e-1
0.6 0.00476 1.55145e-3 5.06879e-3 3.67076e-1
0.7 0.00485 1.55147e-3 5.06575e-3 2.75342e-1
0.8 0.00495 1.55148e-3 5.06270e-3 1.83607e-1
0.9 0.00504 1.55150e-3 5.05965e-3 9.18734e-2
1 0.00513 1.55151e-3 5.05661e-3 1.39073e-4

r Y e (0.008; r) E c (0.008; r) E l (0.008; r)[28] E u (0.008; r)[14]

0 0.00605 1.55168e-3 5.02613e-3 9.17204e-1
0.1 0.00596 1.55166e-3 5.02918e-3 8.25470e-1
0.2 0.00587 1.55165e-3 5.03223e-3 7.33735e-1
0.3 0.00578 1.55163e-3 5.03527e-3 6.42001e-1
0.4 0.00568 1.55161e-3 5.03832e-3 5.50267e-1
0.5 0.00559 1.55160e-3 5.04137e-3 4.58532e-1
0.6 0.00550 1.55158e-3 5.04442e-3 3.66798e-1
0.7 0.00541 1.55156e-3 5.04746e-3 2.75064e-1
0.8 0.00531 1.55155e-3 5.05051e-3 1.83329e-1
0.9 0.00522 1.55153e-3 5.05356e-3 9.15952e-2
1 0.00513 1.55151e-3 5.05661e-3 1.39073e-4

to obtain. Therefore, the numerical simulations with accept-
able accuracy are very attractive and highly desirable in this
field.

Taking into account (9) and (12), we can reach to the following
N fuzzy algebraic linear equation system:

N −1∑

j=0

cj (r) �
{

(FR)
∫ 1

0
D(v )T ∗

j (x)Ti(x) � 1
√

(x − x2)
dx

+ (FR)
∫ 1

0
T ∗

j (x)T ∗
i (x) � 1

√
(x − x2)

dx

}

=
N −1∑

j=0

fj (r)�(FR)
∫ 1

0
T ∗

j (x)T ∗
i (x) � 1

√
(x − x2)

dx (25)

where fi = 1
hi

∫ 1
0 T ∗

i (x)xe−xdx. Thereafter, replacing (2) in the
initial conditions of (21) gives

y(0, r) = [−1 + r, 1 − r] =
N∑

j=0

cj (r)Tj (0) (26)

Equations (25) and (26) give (N + 1) fuzzy algebraic linear
equations. By solving these equations, we will able to obtain the
unknown coefficients of the Chebyshev approximate function of
solution.

In Table III, the obtained absolute errors of our method and
[14], [28] with v = 0.95 and N = 12 are reported. This table
demonstrates that our proposed method can achieve a higher
level of accuracy in comparison with the LOM with the tau
method [28] and the fractional Euler method [14]. The pro-
posed method yields better performance than the LOM with
the tau method [28] because it offers a more precise solu-
tion with the proposed fuzzy method than the LOM with
the tau method in the FFDE problem. This is in accordance
with our theoretical studies in Section II. The comparison
between the proposed method and the LOM with the tau
method is based on the same computational complexity (i.e., the
same number of functions). Furthermore, Fig. 5(a) depicts
Ec(1; r) for v = 0.1, 0.5, 0.75, 0.85, 0.95, and 1, respectively.
Again, this shows that the numerical results from our proposed
method are consistent with the exact solutions, and as v ap-
proaches 1, the corresponding solutions of (27) approach that of
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Fig. 8. RC Circuit: Absolute errors of the proposed method, Ec (0.008; r) (a) for different values of Caputo derivative v and (b) for different values N .

integer-order fuzzy differential equation. In addition, Fig. 5(b)
illustrates Ec(1; r) for a different number of Chebyshev func-
tions. It can be observed that the error rate decreases when N
increases. The lower bound of the absolute error function shown
in Fig. 6 verifies the reliability of the proposed method in the
whole interval. Specifically, the errors tend to approach zero
at the beginning and end points. With this, it is confirmed that
the proposed method has a smooth approximate solution for
the fuzzy fractional oscillation models at the boundary points.
The simulation result is shown in Fig. 7, while the profile of
the fuzzy exact solution and the proposed fuzzy approximate
solution is given in Fig. 7(a) and (b), respectively, with v = 0.95
and N = 12. Note that the analytical and estimated fuzzy solu-
tions are roughly coincided.

In Table IV, we show the comparison of CPU time. The
proposed method obtains better performance than [14], [28] in
both of the absolute errors and CPU time. Again, this confirms
that the fuzzy approximate solution using the proposed method
can achieve high accuracy with low computational time.

Remark 3.2: To make the comparison with the method in
[28], we chose the generalized Laguerre parameter (α > −1) of
Laguerre polynomials, Lα

i (x), to be α = 0. This value was the
best selection for the approximation function.

C. Application III—Resistor–Capacitor Circuit

An RC circuit is an electric circuit composed of different
combinations of resistors and capacitors driven by a voltage or
current source. RC circuits are frequent elements in electronic
devices and play an important role in the transmission of elec-
trical signals in nerve cells. Importance of this type of circuits
is determined with their wide areas of applications: radio re-
ceivers, audio systems (e.g., a low-pass audio filter is used to
preselect low frequencies before amplification in a subwoofer)
and even ac generators. The two most common RC circuits em-
ployed are high-pass filters and low-pass filters. In this section,
we want to depict the numerical behavior of a fractional RC
circuit under uncertainty. Using the Kirchhoff voltage law, we

Fig. 9. RC Circuit: Ec (t; r) for r ∈ [0, 1] and t ∈ [0, 0.008], v = 0.98,
N = 12.

have

E(t) = Ve(t) + VC (t) (27)

where E(t) is the source voltage, Ve(t) is the voltage in the
fractal element, and VC (t) is the voltage in the capacitor. The
voltage in the fractal element is

Ve(t) =
e

σ
(1−v )β
e

dβv q(t)
dtβv

(28)

where β{1, 2} is a parameter that determines whether the el-
ement e is a resistor or inductor, 0 < v ≤ 1, the product βv

determines the order of the FDE, e{R,L} defines the charac-
teristics of e, and σ is a parameter that determines the fractional
structures of e [41].

Assuming in (28) e = R, β = 1, and σe = σR , the FDE un-
der uncertainty for the RC circuit has the form:

cDv
0+q(t) +

1
τv

q(t) =
C

τv
E(t) (29)

where q(t) ∈ C(J, E) ∩ L1(J, E) and

τv =
RC

σ1−v
R

.
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Fig. 10. Profiles of (a) the exact solution and (b) the fuzzy solution of the fractional electrical circuit RC under uncertainty, v = 0.96 and N = 12.

The constant τv can also be called fractional time constant
due to its dimensionality [sec]v . When τv = 1, (29) recovers the
ordinary time constant, i.e., , τ1 = τ = RC. The v parameter,
which represents the order of the fractional time derivative in
(29), can be related to the parameter σR , which characterizes the
presence of fractional structures (fluctuations) in the system. In
this case, the empirical relationship is given by the expression

v =
σR

RC
.

Assuming fuzzy initial conditions, q(0, r) = [−0.001 +
0.001r, 0.001 − 0.001r] and E(t) = sin ωt.

Now, let N = 3 and v = 0.98 for (29) and also assume that for
the charge, voltage, and current, respectively, using R = 1 p.u.,
C = 0.1 p.u., and ω = 2π60. Thus, we can write

ya(t) =
3∑

i=0

•ci � T ∗
i (t)

D(0.98)u4(t) =
3∑

i=0

•ci � D(0.98)T ∗
i (t) (30)

where

D(0.98) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0

1.9685 0.0772 −0.0375 0.0246

−0.0030 7.6402 0.2024 −0.1111

5.6751 0.0693 11.2898 0.3456

⎤

⎥
⎥
⎥
⎥
⎦

.

Using (12) and (30), we can write the tau approximation of
(29) as

3∑

j=0

cj (r) �
{〈

D(0.98)T ∗
j (t), T ∗

i (t)
〉

+
〈
T ∗

j (t), T ∗
i (t)
〉}

=
3∑

j=0

fj (r)�
〈
T ∗

j (t), T ∗
i (t)
〉

(31)

TABLE VI
RC CIRCUIT: COMPARISON OF THE MAXIMUM ABSOLUTE ERROR VERSUS CPU

TIME (SECONDS) WITH v = 0.98

Methods Max ( E c (0.008; r)) CPU time (seconds)

Proposed method 1.1551e-3 2.7584
[14] 9.1654e-1 0.0152
[28] 5.0870e-3 9.9520

for i = 0, 1, 2. In addition, the fuzzy coefficients of f(t) =
C
τv

sin ωt are calculated as

f(t) =
C

τv
sinωt 
 f4(t) =

3∑

j=0

fjT
∗
j (t)

in which fj , j = 0, ..., 3, are calculated as

fj =
C

τvhj

∫ 1

0
T ∗

j (t) sin ωt
1√

t − t2
dt.

Furthermore, approximate function (2) is substituted in the ini-
tial condition, (t = 0) of (29) as

y(0, r) =
3∑

j=0

cj (r) � T ∗
j (0) = [−0.001 + 0.001r, 0.001 − 0.001r].

Now, we can derive and solve the four fuzzy algebraic linear
equations easily to find the unknown coefficients {cj}3

j=0 . Next,
numerical results will be presented for different values of v and
N to confirm the validity and efficiency of our proposed method
for this specific fuzzy model.

In Table V, the absolute errors between the exact solution
(Ye(0.008, r)) and the approximate solution (ya(0.008, r)) at
N = 10 with the final time T = 0.008 are given. The abso-
lute error is compared with the absolute errors of the Laguerre
tau spectral method [28] and the fractional Euler method [14],
respectively. As usual, the fractional Euler method is the easiest
scheme to implement; however, they are of low-order accuracy
and has some limitations to provide the numerical solution for
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Fig. 11. Graph of the shifted Chebyshev polynomials with various values of
N over [0, 1].

a wide range of the fuzzy fractional problems. In contrast, our
proposed method offers better accuracy.

The absolute errors (Ec(0.008; r)) of the system (29) using
the tau spectral method based on the COM under uncertainty
for different values of v are illustrated in Fig. 8(a). This figure
shows that the fuzzy solution converges progressively as v in-
creases from 0.92 to 1. In terms of the physical approach, the
fractal element behaves as a resistor of resistance R for v = 1,
and intermediate values of v determine the behavior between a
capacitor and a resistor. In Fig. 8(b), we display absolute errors
of various choices of N . It is clear that when N increases, the
approximate solution improves. Fig. 9 shows the error profile
(Ec(t; r)) between the exact solution and the proposed fuzzy
solution at t ∈ [0, 0.008] for v = 0.98. Again, it is confirmed
that the error function has a smooth behavior throughout the
reported interval. The fuzzy approximate solution is expressed
using the COM with the tau method in Fig. 10(b) and compared
with the exact solution in Fig. 10(a). Finally, we show the CPU
time in Table VI. We observe that although the maximum abso-
lute error of the method in [28] is close to the proposed method,
the CPU time is much higher than that in our proposed method.

IV. CONCLUSION

This paper has presented both numerical simulation and in-
troduced fuzzy mathematical models that can be represented in
terms of FDEs under certainty. Compared with the extensive
amount of work put into developing FDE schemes in the lit-
erature, we found out that only a little effort has been put into
developing numerical methods for FFDE. Even so, most of the
solutions are based on a rigorous framework, that is, they are
often tailored to deal with specific applications and are gener-
ally intended for small-scale fuzzy fractional systems. In this
paper, we deployed a spectral tau method based on Chebyshev
functions to reduce the FFDE to a fuzzy algebraic linear equa-
tion system to address the fuzzy fractional systems. In fact, in
comparison with other methods developed for the FFDE, our
scheme has a number of advantages: 1) ease of implementation;
2) lower computational cost; and 3) high accuracy. Although, at
the moment, this paper only covers the case of the fuzzy linear
time-invariant systems, our future work intends to extend other
types of systems such as fuzzy random FDE, fuzzy functional

FDE, nonlinear systems, time delay, and time varying using the
analogous technique proposed in this paper.

APPENDIX

In this appendix, necessary definitions and mathematical pre-
liminaries of the fuzzy set theory, fuzzy fractional calculus, and
Chebyshev polynomials are revisited.

A. Basic Concepts

Definition 4.1 (see [42]): We define a metric D on E (D :
E × E −→ R+

⋃{0}) by a distance, namely, the Hausdorff dis-
tance as follows:

D(u, v) = sup
r∈[0,1]

max{|u−(r) − v−(r)|, |u+(r) − v+(r)|}.
(32)

It is shown that (E,D) is a complete metric space.
The concept of Hukuhara difference, which is recalled in

the next definition, was initially generalized by Markov [43] to
introduce the notion of generalized Hukuhara differentiability
for the interval-valued functions. Afterward, Kaleva [44] em-
ployed this notion to define the fuzzy Hukuhara differentiability
for the fuzzy-valued functions.

Definition 4.2 (see [42]): Let x, y ∈ E. If there exists z ∈ E
such that x = y ⊕ z, then z is called the Hukuhara difference of
x and y, and it is denoted by x � y.

In this paper, the sign “�” always stands for Hukuhara differ-
ence (H-difference for short) and note that x � y �= x + (−y).
In addition, throughout the paper, it is assumed that the
H-difference and generalized Hukuhara difference (gH-
difference) exist.

Theorem 4.1 (see [45]): Let F : (a, b) → E. If F is gH-
differentiable at x ∈ (a, b); then, one of the following cases
hold:

i) f ′
−(t, r), f ′

+(t, r) are differentiable at x uniformly in r ∈
[0, 1], and either

[F ′(t, r)] = [f ′
−(t, r), f ′

+(t, r)] ∀r ∈ [0, 1]

or

[F ′(t, r)] = [f ′
+(t, r), f ′

−(t, r)] ∀r ∈ [0, 1].

ii) (f ′
−)1(t, r), (f ′

−)2(t, r), (f ′
+)1(t, r), (f ′

+)2(t, r) exist
(one-sided derivatives of the end point functions), uni-
formly in r ∈ [0, 1], and satisfy (f ′

−)1(t, r) = (f ′
+)2(t, r)

and (f ′
−)2(t, r) = (f ′

+)1(t, r) and either

[F ′(t, r)] = [(f ′
−)2(t, r), (f ′

+)2(t, r)]

= [(f ′
+)1(t, r), (f ′

−)1(t, r)], ∀r ∈ [0, 1]

or

[F ′(t, r)] = [(f ′
+)2(t, r), (f ′

−)2(t, r)]

= [(f ′
−)1(t, r), (f ′

+)1(t, r)], ∀r ∈ [0, 1].

B. Fuzzy Fractional Differentiability

Definition 4.3 (see [46]): We denote the Caputo fractional
derivatives by the capital letter with upper-left index cD, and
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the Caputo fractional derivatives of order v are defined as

cDvf(x) = Im−vDm f(x)

=
1

Γ(m − v)

∫ x

0
(x − t)m−v−1fm (t) dt

where m − 1 < v ≤ m, x > 0, and Dm is the classical differ-
ential operator of order m.

For the Caputo derivative, we have

cDvC = 0, (C is a constant)

cDvxβ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for β ∈ N0 and β < �v�
Γ(β + 1)

Γ(β + 1 − v)
xβ−v , for β ∈ N0 and β ≥ �v�

or β /∈ N and β > �v� .

The ceiling function �v� is used to denote the smallest integer
greater than or equal to v, and the floor function �v� is to denote
the largest integer less than or equal to v. In addition, N =
{1, 2, . . .} and N0 = {0, 1, 2, . . .}.

Definition 4.4 (see [47]): Similar to the differential equation
of integer order, the Caputo fractional differentiation is a linear
operation, i.e.,

cDv (λf(x) + μg(x)) = λcDvf(x) + μcDvg(x)

where λ and μ are constants.
Let a > 0 and J = (0, a]; we denote C(J, E) as the space

of all continuous fuzzy functions defined on J . Also let f ∈
C(J, E); we say that f ∈ L1(J, E) iff D(

∫ a

0 f(s)ds, 0̂) < ∞
[48]. In the rest of the paper, the above notations will be used
frequently. The fuzzy Caputo fractional derivatives of order 0 <
v ≤ 1 for fuzzy-valued function f are given as follows.

Definition 5.5 (see [49]): Let f ∈ C(J, E) ∩ L1(J, E) is a
fuzzy set-value function; then, f is said to be Caputo’s fuzzy
differentiable at x when

(cDv
0+ f)(x) =

1
Γ(1 − v)

∫ x

0

f ′(t)
(x − t)v dt (33)

where 0 < v ≤ 1.
Definition 4.6 (see [14]): Let f ∈ C(J, E) ∩ L1(J, E) and

x0 ∈ J and Φ(x) = 1
Γ(1−v )

∫ x

0
f (t)�∑ 1

k = 0
t k

k ! f
(k )
0

(x−t)v dt. We say that
f(x) is fuzzy Caputo fractional differentiable of order 0 < v ≤
1 at x0 , if there exists an element (cDv

0+ f)(x0) ∈ C(J, E) such
that for all 0 ≤ r ≤ 1 and for h > 0 sufficiently near zero on
either

i) (cDv
0+ f)(x0) = lim

h→0+

Φ(x0 + h) � Φ(x0)
h

= lim
h→0+

Φ(x0) � Φ(x0 − h)
h

or

ii) (cDv
0+ f)(x0) = lim

h→0+

Φ(x0) � Φ(x0 + h)
−h

= lim
h→0+

Φ(x0 − h) � Φ(x0)
−h

For the sake of simplicity, we say that the fuzzy-valued func-
tion f is c [(1) − v]-differentiable if it is differentiable as in
Definition 4.6(i), and f is c [(2) − v]-differentiable if it is differ-
entiable as in Definition 4.6(ii).

Proposition 4.1 (see [50]): If ϑ ∈ E, then we have the fol-
lowing results:

i) ϑ(r2) ⊂ ϑ(r1), if 0 < r1 ≤ r2 ≤ 1.
ii) {rn} ⊂ [0, 1] is a nondecreasing sequence which con-

verges to r; then, ϑ(r) = ∩n≥1 ϑ(rn ).
Conversely, if P(r) = {[P1(r),P2(r)] : r ∈ [0, 1]} is a fam-

ily of closed real intervals which (i) and (ii) hold, then
{P(r)}r∈[0,1] defines a fuzzy number ϑ ∈ E such that P(r) =
ϑ(r).

Now, in the following theorem, we prove the fact that under
some conditions, the FFDE can be equivalent with an associated
fuzzy fractional integral equation. In fact, the following results
have been firstly presented and proved in [12] and [19] for
interval fractional calculus.

Theorem 4.2: Let f(x, r) = [f−(x, r), f+(x, r)] ∈ C(J, E)
∩ L1(J, E), f−, f+ are Caputo differentiable and 0 < v ≤ 1.
Then

(cDv
0+ f)(x, r) ⊇ [min{(cDv

0+ f−)(x, r), (cDv
0+ f+)(x, r)},

max{(cDv
0+ f−)(x, r), (cDv

0+ f+)(x, r)}] (34)

for a.e. x ∈ J and r ∈ [0, 1]. In addition

(cDv
0+ f)(x, r) = [(cDv

0+ f−)(x, r), (cDv
0+ f+)(x, r)] (35)

if f is c [(1) − v]-differentiable, and

(cDv
0+ f)(x, r) = [(cDv

0+ f+)(x, r), (cDv
0+ f−)(x, r)] (36)

if f is c [(2) − v]-differentiable.
Proof: Since f1 and f2 are differentiable, we have

f ′(x, r) = [min{f ′
−(x, r), f ′

+(x, r)},max{f ′
−(x, r), f ′

(x, r)}].
Then

(c Dv
0+ f )(x, r) =

1
Γ(1 − v)

∫ x

0
(x − s)−v f ′(s, r)ds

=
1

Γ(1 − v)

∫ x

0
(x − s)−v [min{f ′

−(s, r), f ′
+ (s, r)},

max{f ′
−(s, r), f ′

+ (s, r)}]ds

⊇ 1
Γ(1−v)

[

min
{∫ x

0
(x−s)−v f ′

−(s, r)ds,

∫ t

0
(x−s)−v f ′

+ (s, r)ds

}

,

max
{∫ x

0
(x − s)−v f ′

−(s, r)ds,

∫ x

0
(x − s)−v f ′

+ (s, r)ds

}]

.

In fact
1

Γ(1 − v)

∫ x

0
(x − s)−v (min

{
f ′
−(s, r), f ′

+ (s, r)
})

ds

≤ 1
Γ(1 − v)

min
{∫ x

0
(x−s)−v f ′

−(s, r)ds,

∫ t

0
(x−s)−v f ′

+ (s, r)ds

}

≤ 1
Γ(1−v)

max
{∫ x

0
(x−s)−v f ′

−(s, r)ds,

∫ t

0
(x−s)−v f ′

+ (s, r)ds

}

≤ 1
Γ(1 − v)

∫ x

0
(x − s)−v max{f ′

−(s, r), f ′
+ (s, r)}ds
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which complete the proof of (34).
Now, suppose that f is c [(1) − v]-differentiable, set

Pr := P(x, r) =
[ ∫ x

0
(x − s)−v f ′

−(s, r)ds,

∫ x

0
(x − s)−v f ′

+(s, r)ds

]

.

We show that the family {Pr}r∈[0,1] defines a fuzzy-valued
function.

Let r1 < r2 ; then, f ′
−(s, r1) ≤ f ′

−(s, r2) and f ′
+(s, r1) ≥

f ′
+(s, r2). Hence, P(x, r1) ⊇ P(x, r2). Using the fact that

f ′
−(s, 0) ≤ f ′

−(s, rn ) ≤ f ′
−(s, 1) for rn ∈ [0, 1], we obtain

[|(x − s)−v f ′
†(s, rn )| ≤ (a)−v max

{|f ′
†(s, 0)|, |f ′

†(s, 1)|} := h†(s)

for † = {−,+}. Indeed, h†(s) is Lebesgue integrable on (0, a).
Therefore, using Lebesgue’s dominated convergence theorem,
if rn

n→∞→ r, we have

lim
n→∞

∫ x

0
(x − s)−v f ′

†(s, rn )ds =
∫ x

0
(x − s)−v f ′

†(s, r)ds

for † = {−,+}. Consequently, using Proposition 4.1, the proof
of 35 is now complete. For Case (36), the idea is completely
similar. �

In the next theorem, we provide and prove the fact that under
some conditions the fuzzy Caputo differentiability of the sum-
mation of two fuzzy Caputo differentiable functions is linear.
This results have been first introduced by Lupulescu [19] for the
interval cases. We extended it for some fuzzy cases.

Theorem 4.3: Let F (x, r) = [f−(r), f+(r)], G(x, r) =
[g−(r), g+(r)] ∈ C(J, E) ∩ L1(J, E), such that f−, f+ , g−, g+
are Caputo differentiable on J . If F and G are equally fuzzy
Caputo differentiable (both are c [(1) − v]-differentiable or
c [(2) − v]-differentiable on J , then

cDv
0+ (F + G)(x, r) = (cDv

0+ F )(x, r) + (cDv
0+ G)(x, r)

for a.e. x ∈ J.
Proof: It is easy to verify that F + G is fuzzy Caputo dif-

ferentiable. Suppose that F and G are c [(2) − v]-differentiable;
then

c Dv
0+ (F + G)(x, r) =

1
Γ(1 − v)

∫ x

a

(x − s)−v (F + G)′(s, r)ds

=
1

Γ(1−v)

∫ x

a

(x−s)−v [f ′
+ (s, r)+ g′

+ (s, r), f ′
−(s, r)+ g′

−(s, r)
]
ds

=
1

Γ(1 − v)

[ ∫ x

a

(x − s)−v (f ′
+ (s, r) + g′

+ (s, r)
)
ds,

∫ x

a

(x − s)−v (f ′
−(s, r) + g′

−(s, r)) ds

]

=
1

Γ(1 − v)

{∫ x

a

(x − s)−v [f ′
+ (s, r), f ′

−(s, r)
]
ds

+
∫ x

a

(x − s)−v [g′
+ (s, r), g′

−(s, r)
]
ds

}

= (c Dv
0+ F )(x, r) + (c Dv

0+ G)(x, r)

for a.e. x ∈ J. �

Theorem 4.4: Let F ∈ C(J, E) ∩ L1(J, E), and v ∈ (0, 1].
If F is c [(1) − v]-differentiable, then

Iv
0+ (cDv

0+ F )(x, r) = F (x, r) � F (0, r)

or if F is c [(2) − v]-differentiable, then

Iv
0+ (cDv

0+ F )(x, r) = −F (0, r) � (−1)F (x, r)

for a.e. x ∈ J.
Proof: Let F is c [(1) − v]-differentiable; then

Iv
0+ (cDv

0+ F )(x, r) = Iv
0+ I1−v

0+ F ′(x, r) = I1
0+ F ′(x, r)

=
∫ x

0
F ′(s, r)ds = F (x, r) � F (0, r)

also, if F is c [(2) − v]-differentiable, then

Iv
0+ (c Dv

0+ F )(x, r) = Iv
0+ I1−v

0+ F ′(x, r) = I1
0+ F ′(x, r)

=
∫ x

0
F ′(s, r)ds = −F (0, r) � (−1)F (x, r)

which completes the proof. �
Theorem 4.5: Let F ∈ C(J, E) ∩ L1(J, E), and Iv

0+ F is
c [(1) − v]-differentiable; then

c(Iv
0+ F )(v )(x, r) = F (x, r)

for a.e. x ∈ J and r ∈ [0, 1].
Proof: From the assumption, we have Iv

0+ F is c [(1) − v]-
differentiable; therefore, we have

F (x, r) = [f−(x, r), f+(x, r)]

⇒ Iv
0+ F (x, r) = [Iv

0+ f−(x, r), Iv
0+ f+(x, r)]

⇒ c(Iv
0+ F )(v )(x, r) = [c(Iv

0+ f−)(v )(x, r), c(Iv
0+ f+)(v )(x, r)]

= [f−(x, r), f+(x, r)] = F (x, r).

�

C. Properties of Chebyshev Polynomial

The classical Chebyshev polynomials, denoted by Ti(x)(i ≥
0), as a special case of Jacobi polynomials have been used ex-
tensively in mathematical analysis and practical applications
as well as play an important role in the analysis and imple-
mentation of spectral methods. One of the advantages of using
Chebyshev polynomials as a tool for expansion functions is the
good representation of smooth functions by finite Chebyshev
expansion provided that the function y(x) is differentiable. The
coefficients in Chebyshev expansion approach zero faster than
any inverse power in n, as n goes to infinity [33]. It is with this
motivation that we introduce in this paper a family of Cheby-
shev polynomials for solving FFDE. They can be determined
on the interval [−1, 1] with the aid of the following recurrence
formula:

Ti+1(x) = 2tTi(x) − Ti−1(x), i = 1, 2, . . .

where T0(x) = 1 and T1(x) = t. In order to use these polyno-
mials on the interval x ∈ [0, L], we define the so-called shifted
Chebyshev polynomials by introducing the change of variable
t = 2x

L − 1. Let the shifted Chebyshev polynomials Ti( 2x
L − 1)
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be denoted by T ∗
L,i(x) (see Fig. 11). Then, T ∗

L,i(x) can be ob-
tained as follows:

T ∗
L,i+1(x) = 2

(
2x

L
− 1
)

T ∗
L,i(x) − T ∗

L,i−1(x), i = 1, 2, . . .

where T ∗
L,0(x) = 1 and T ∗

L,1(x) = 2x
L − 1. In this paper, we as-

sume that L = 1 and for simplicity denote T ∗
1,i(x) by T ∗

i (x).
Therefore, the analytic form of the shifted Chebyshev polyno-
mials T ∗

i (x) of degree i is given by

T ∗
i (x) = i

i∑

k=0

(−1)i−k (i + k − 1)!22k

(i − k)!(2k)!
xk (37)

where T ∗
i (0) = (−1)i and T ∗

i (1) = 1. The orthogonality con-
dition is

∫ L

0
T ∗

j (x)T ∗
k (x)w(x) dx = hkδjk (38)

where w(x) = 1√
x−x2 and hk = εk

2 π, ε0 = 2, εk = 1, k ≥ 1.

A function f(x), square integrable in [0, 1], may be expressed
in terms of shifted Chebyshev polynomials as

f(x) =
∞∑

j=0

cjT
∗
j (x)

where the coefficients cj are given by

cj =
1
hj

∫ 1

0
f(x)T ∗

j (x)w(x) dx, j = 0, 1, 2, . . .. (39)

In practice, only the first (N + 1)-term shifted Chebyshev
polynomials are considered. Therefore, a function f(x) can be
expanded as

f(x) 
 fN (x) =
N∑

j=0

cjT
∗
j (x) = CT Φ(x) (40)

where the shifted Chebyshev coefficient vector C and the shifted
Chebyshev vector Φ(x) are given by

CT = [c0 , c1 , . . . , cN ]

Φ(x) = [T ∗
0 (x), T ∗

1 (x), . . . , T ∗
N (x)]T . (41)

Suppose that fN (x) is the best shifted Chebyshev polyno-
mial expansion of f(x) using only the N + 1 polynomials
T ∗

0 (x), . . . , T ∗
N (x). We can denote the space generating by these

polynomials as

TN = Span{T ∗
0 (x), T ∗

1 (x), . . . , T ∗
N (x)}.

Since TN is a finite-dimensional vector space, f has a unique
best approximation from TN , say fN ∈ TN , as satisfied in the
following inequality [51]:

∀y ∈ TN , ‖ f(x) − fN (x) ‖w≤‖ f(x) − y ‖w

in which ‖ f ‖w = (
∫ 1

0 f(x)2w(x)dx)1/2 [37].
If we define the q times repeated differentiation of Chebyshev

vector Φ(x) by DqΦ(x), then

DqΦ(x) 
 D(q)Φ(x)

where q is an integer value and D(q) is the operational matrix
of derivative of φ(x) [31]. Now, in the following theorem, the
operational matrix of Caputo fractional derivative of Chebyshev
functions is generalized.

Theorem 4.6 (see [24]): Let Φ(x) is the shifted Chebyshev
vector defined in (41) and suppose v > 0; then, the Caputo
fractional derivatives operator of order v is as

cDvΦ(x) 
 D(v )Φ(x) (42)

where D(v ) is the (N + 1) × (N + 1) COM of derivative of
order v and is defined as follows:

D(v ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 0
Sv (�v� , 0) Sv (�v� , 1) Sv (�v� , 0) . . . Sv (�v� , N )
...

...
... . . .

...
Sv (i, 0) Sv (i, 1) Sv (i, 2) . . . Sv (i, N )
...

...
... . . .

...
Sv (N, 0) Sv (, 1) Sv (N, 2) . . . Sv (N, N )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

Sv (i, j) =
i∑

k= �v �

× (−1)i−k 2i(i + k − 1)!Γ(k − v + 1
2 )

εj Γ(k + 1
2 )(i − k)!Γ(k − v − j + 1)Γ(k + j − v + 1)

. (43)

Note that in D(v ) , the first �v� rows are all zero.

D. Proof of Lemma 2.1

Consider the Taylor’s formula

y = f (x0 ) + f ′(x0 )(x − x0 ) + · · · + f (N −1) (x0 )
(x − x0 )

N −1

(N − 1)!

for which we know that

|f − y| ≤ f (N )(η)
(x − x0)

N

(N)!
, η ∈ (x0 , 1).

Since CT Φ(x) is the best approximation to f from TN and
y ∈ TN , one has

‖ f (x) − fN (x) ‖2
w ≤‖ f − y ‖2

w ≤
M 2

(N )!2

∫ 1

0
(x − x0 )

2(N )w(x)dx

where M = maxx∈[x0 ,1]f
(N )(x). By choosing S = max{1 −

x0 , x0} and noting that w(x) is always positive in (0, 1), we
have

‖ f(x) − fN (x) ‖2
w≤

M 2S2(N )

(N)!2

∫ 1

0
w(x)dx =

M 2S2(N )

(N)!2
π

and by taking the square roots, Lemma 2.1 is proved.
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E. Proof of Lemma 2.2

First, we obtain a bound for cDαxi . Therefore, taking Defi-
nition 4.3 into consideration, we have

c Dv xi =
Γ(i + 1)

Γ(i + 1 − v)
xi−v ≤ |Γ(i + 1)|

|Γ(1 − v)|x
−v
0 , i = 0, 1, . . . , N.

Then, using (37), Definition 4.3, and Chebyshev polynomials
properties, we have

cDαT ∗
i (x) = i

i∑

k=0

(−1)i−k (i + k − 1)!22k

(i − k)!(2k)!
cDαxk

≤ |Γ(i + 1)|
|Γ(1 − v)|x

−v
0 i

i∑

k=0

(−1)i−k (i + k − 1)!22k

(i − k)!(2k)!

=
|Γ(N + 2)|
|Γ(1 − v)| x−v

0 T ∗
i (1)

but T ∗
i (1) = 1; therefore, we can obtain

cDαT ∗
i (x) ≤ |Γ(i + 1)|

|Γ(1 − v)|x
−v
0 .

Now, exploiting Lemma 2.1, Lemma 2.2 is proved.

F. Method of Finding {ci}N
i=0

Let us consider again the following linear FDE:

(cDv
0+ y)(x) + μy(x) = f(x), for 0 < v ≤ 1, in I = (0, 1)

(44)
with initial condition

y(0) = y0 (45)

in which μ is a constant. In addition, cDv
0+ indicates the Caputo’s

fractional derivative of order v for y(x); y0 describes the initial
value of y(x), and f(x) is an arbitrary source function.

Let w(x) = 1√
x−x2 ; then, we denote by L2

w (I)(I := (0, 1))
the weighted L2 space with inner product:

〈u, v〉w =
∫

I
w(x)u(x)v(x)dx (46)

and the associated norm ‖ u ‖w = 〈u, u〉1/2
w . It is known that

{T ∗
n : n ≥ 0} forms a complete orthogonal system in L2

w (I).
Hence, as stated already, if we define

TN (I) = {T ∗
0 (x), T ∗

1 (x), . . . , T ∗
N (x)} (47)

then the shifted Chebyshev tau approximation to (44) is to find
yN ∈ TN (I) such that

〈
D(v )yN , T ∗

k (x)
〉

w
+ μ〈yN , T ∗

k (x)〉w = 〈f, T ∗
k (x)〉w

k = 0, 1, . . . , N − 1. (48)

As we know

yN (x) =
N∑

j=0

cj T
∗
j (x), C = [c0 , c1 , . . . , cN ]T

fk = (〈f, T ∗
k (x)〉w , k = 0, 1, . . . N − 1

f = (f0 ,f1 , . . . ,fN ,y0)T

y(0) = y0 . (49)

Then, (48) can be written as

N∑

j=0

cj

[〈
D(v )T ∗

j (x), T ∗
k (x)
〉

w
+ μ
〈
T ∗

j (x), T ∗
k (x)
〉

w

]

= 〈f , T ∗
k (x)〉w , k = 0, 1, . . . , N − 1,

N∑

j=0

cjT
∗
j (0) = y0 . (50)

Let us denote

A = (akj )0<k,j<N , B = (bkj )0<k,j<N

where

ak j =

{〈
D(v )T ∗

j (x), T ∗
k (x)
〉

w
, k = 0, 1, . . . N − 1, j = 0, 1, . . . N

T ∗
j (0), k = 0, 1, . . . N − 1, j = 0, 1, . . . N

bk j =

{〈
T ∗

j (x), T ∗
k (x)
〉

w
, k = 0, 1, . . . N − 1, j = 0, 1, . . . N

0, otherwise.

Then, by taking into consideration (43) and employing of the
orthogonality relation of shifted Chebyshev polynomials (38),
and after some manipulation and calculation, one can depict
that the nonzero elements of akj and bkj are given clearly in the
following form:

akj =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

hkSv (j, k),
k = 0, 1, . . . N − 1, j = 0, 1, . . . N

(−1)j−k+N +1 j(j − k + N + 2)2(k−N )3
√

π

Γ(k − N − 1
2 )

k = 0, 1, . . . N − 1, j = 0, 1, . . . N

bkj =

{
hk , k = j = 0, 1, . . . N − 1

0, otherwise.

Consequently, we can write (50) in the following matrix sys-
tem form:

(A + μB)C = f . (51)

In the case of μ �= 0, the linear system (51) can be solved by
employing any existing direct or numerical method.

G. Inner Product

Definition 4.7 (see [52]): An inner product on S is a map

〈., .〉 : S × S → X
(p, q) �→ 〈p, q〉
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where S is a finite-dimensional nonzero vector space over X ,
with the following properties.

1) Linearity: For p, q,m ∈ S
{
〈p + m, q〉 = 〈p, q〉 + 〈m, q〉
〈ap, q〉 = a 〈p, q〉 .

2) Positivity: 〈p, p〉 ≥ 0, for all p ∈ S.
3) Positive definiteness: 〈p, p〉 = 0 iff p = 0.
4) Conjugate symmetry: 〈p, q〉 = 〈q, p〉 for all p, q ∈ S.
Lemma 4.1: 〈RN (x), T ∗

i (x)〉E is a fuzzy-like residual inner
product over XE = L2(J, E), where

〈RN (x), T ∗
i (x)〉E = (FR)

∫ 1

0
(RN (x) � T ∗

i (x) � w(x))dx.

(52)
Proof: Indeed, RN (x, r) = [RN (x, r), RN (x, r)], where

RN (x, r) and RN (x, r) are given as

RN (x, r) = CT (r)(D(v )Φ(x) + Φ(x)) − FT (r)Φ(x)
RN (x, r) = C

T
(r)(D(v )Φ(x) + Φ(x)) − F

T
(r)Φ(x).

Therefore, the r-cut representation of (52) is as follows:

〈RN (x, r), T ∗
i (x)〉E = (FR)

∫ 1

0
(RN (x, r) � T ∗

i (x) � w(x)) dx

=
[∫

P 1

RN (x, r)T ∗
i (x)w(x)dx +

∫

P 2

RN (x, r)T ∗
i (x)w(x)dx,

∫

P 1

RN (x, r)T ∗
i (x)w(x)dx +

∫

P 2

RN (x, r)T ∗
i (x)w(x)dx

]

where P1 and P2 are the set of all points that T ∗
i (x) ≥ 0 and

T ∗
i (x) < 0, respectively. Then, it is easy to verify that
∫

P1

RN (x, r)T ∗
i (x)w(x)dx +

∫

P2

RN (x, r)T ∗
i (x)w(x)dx

and
∫

P1

RN (x, r)T ∗
i (x)w(x)dx +

∫

P2

RN (x, r)T ∗
i (x)w(x)dx

are both inner product over XR. In fact, these relations satisfy
in the inner product properties 1–4 in Definition (4.7). �
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