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A B S T R A C T

Low-light is a challenging environment for image processing and computer vision tasks, either in contrast
enhancement for better visibility and quality, or application oriented tasks such as detection. We found that
the current trend of low-light enhancement research is heavily on quality improvement. In this work, we aim to
shift the focus towards a more functional direction, that is enhancement that prioritizes feature retrieval. For this
reason, we first propose to model low-light enhancement as a set of localized functions using Gaussian Process
() that is trained at runtime using data from a simple Convolutional Neural Network (CNN) to provide the
necessary feature information as reference. The CNN is in turn trained using large amount of synthetic data,
based upon the luminance distribution of real world low-light images to learn the relationship between features
and pixels. Secondly, we also proposed two new evaluation metrics to better assess enhancement algorithms to
support high level computer vision tasks, namely, local features matching and intensity histogram similarity.
In our experiments, our proposed low-light enhancement framework outperforms the state-of-the-arts with
significant improvement in Recall, 𝐹1, and 𝐹2-score of SIFT features matching, and achieve comparable results
for 𝑙1-norm distance of histograms as well as the PSNR. Moreover, our analysis of the performance showed that
the PSNR quality metric is not only unable to assess the practicality of the results, but also inappropriately gives
high assessment to low visual quality images.

1. Introduction

Low-light is a challenging environment for human vision as the lack
of visibility affects a person’s ability to perform tasks. Therefore, com-
puter vision algorithms that can provide assistance in such conditions
are highly valuable. However, current research works related to the
low-light domain are mostly on image aesthetic enhancement instead of
applications, like object detection, that can be developed into practical
intelligent vision systems, such as visual surveillance and autonomous
car driving [1].

The motivation of our work is to shift the focus of low-light image1

enhancement research from the aesthetics driven studies towards a func-
tional practice, i.e. enhancement in support of computer vision applica-
tions. For this reason, a change is necessary not only in the formulation
of enhancement frameworks but also the evaluation schemes. Hence, in
this paper, we set out to achieve two objectives, (1) to propose a low-
light image contrast enhancement framework that primarily retrieves
features that were degraded by low illumination and contrast, while
visual quality is secondary, and (2) to propose new evaluation metrics
that would assess the ability of enhancement algorithms to retrieve
features.
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E-mail addresses: lohyuenpeng@siswa.um.edu.my, yploh@mmu.edu.my (Y.P. Loh), xliang@xidian.edu.cn (X. Liang), cs.chan@um.edu.my (C.S. Chan).

1 Low-light images are images captured in environment with low illumination such as nighttime, twilight, etc.

Low-light image enhancement is a non-trivial task because of the
non-uniformity of scene luminance, as shown in Fig. 1. It can be seen
that Fig. 1(a) is a uniformly dark low-light image, however, there
are others with weak light sources in the dark environments, such as
Fig. 1(b), or reflected from surfaces, as shown in Fig. 1(c). Researchers
mostly seek to counter the over and under enhancement problems
caused by such phenomenon through increasingly sophisticated meth-
ods of manipulating the illumination of the image. However, to the best
of our knowledge, none has explicitly considered the prospects of restor-
ing features that could be used as a result of the enhancement. As we will
demonstrate, state-of-the-art low-light image enhancement algorithms
produce results with good visual quality but do not necessarily retrieve
the most features.

In this paper, we make two major proposals. First, is a framework
that addresses the challenge of low-light enhancement from the perspec-
tive of features retrieval. Based on our analysis of low-light image char-
acteristics, we noted that the enhancement functions has to be localized
within an image for optimal results, i.e. individual functions to brighten,
maintain, or darken, specific regions or pixels. To this end, we employed
Gaussian Process regression to construct a distribution of such functions
with the support of a Convolutional Neural Network to introduce feature
enhancement functions into the distribution. Secondly, we propose two
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Fig. 1. (Top) Low-light images, and (Bottom) our contrast enhancement results, with their respective intensity histograms. The low-light images are not only brightened, but the details
of the image content are also visibly improved, such as the (a) poster design, (b) text, and (c) cat. More details are provided in Sections 5.2 and 5.3. These sample images are from the
MS COCO dataset. [Best viewed in color].

new evaluation metrics that focus on features retrieval to demonstrate
the usability of image enhancement algorithms for high level computer
vision tasks. Namely, the precision, recall, and 𝐹 -score of local features
matching, and 𝑙1-norm distance measure of intensity histogram.

Experimental results showed that our proposed framework outper-
formed the state-of-the-art [2–7] in our newly proposed feature match-
ing evaluation while comparable in the 𝑙1-norm distance of histogram
as well as the standard image quality measure, the peak signal-to-noise
ratio (PSNR). Moreover, qualitative evaluation of enhancement on real
low-light images from the ExDark dataset [1] showed that our proposal
is able to overcome problems such as color distortion, saturation, over-
enhancement, and noise.

2. Related works

The research works in computer vision tackle low-light problems
from two perspectives, (1) through the use of hardware supports such
as cameras equipped with infrared sensors or thermal imagers [8–11];
or (2) using enhancement algorithms on low-light images or videos [2–
5,12–19]. The former are commonly used to address surveillance and
application based problems but the required cameras are costly and
do not show realistic images, e.g. only silhouettes of pedestrians and
vehicles can be observed. Whereas the latter, namely low-light image
enhancement is generally applied for image quality improvement. Our
interest lies in developing low-light image enhancement that not only
improves the quality but supports intelligent computer vision applica-
tions.

We further discuss a few researches that are closely related to this
area as follows:

Low-light imaging. Low-light imaging enhancement is a computa-
tional photography pipeline that processes raw data from camera sensor
to construct the enhanced RGB output. [20] is a notable work that
proposed a deep neural network approach to learn the whole pipeline
from end-to-end to avoid noise amplification and error accumulation
found in the conventional pipeline. However, the function of this work
is limited by the camera sensor where the model has to be trained
specifically for a given sensor. In our work, we focus on the image
enhancement component which is not restricted by the camera sensors
or hardware.

HDR imaging. This field of work addresses the problem of low
quality images due to improper exposure that could be caused by

low-light conditions, inappropriate camera settings and/or its limited
dynamic range. One of the approaches is the stack-based HDR [21–
23], where multiple images of varying exposures/low dynamic range
are captured and fused to improve the image quality. However, a
drawback of such methods is the multiple image requirement where
the movement of dynamic objects will result in subtle differences
within each image and subsequently cause HDR algorithms to produce
results with ‘‘ghosting’’ artifacts. The other approach is the single image
contrast enhancement where the proposed methods have similarity
with the low-light image enhancement works as well. Though, we note
that the difference between these two domains is that, HDR imaging
addresses over or under exposed images regardless if the image is
captured in low-light or bright conditions, to produce the best quality
image, whereas low-light image enhancement specifically focus on low-
light environments such as nighttime. The latter is the main target area
of our work.

Low-light enhancement. Low-light image enhancement specifically
addresses images captured in low-light conditions such as nighttime,
where the common goal is to brighten and improve the contrast of the
image for better visual quality and show details that were hidden in
darkness. The various proposed works can be categorized into three
categories. The first is statistically model and manipulate [12–14] the
distributions of low-light images, either intensities or high frequency
coefficients, to improve the image contrast and brightness, such as
histogram equalization and its variants [12,28,29]. The second cate-
gory is the transformation model approach [6,15,16,19,24] that uses
parameterized functions or trained models to perform transformation
mapping from low-light image space to bright image space, mean-
while preserve the contextual information. The third category uses the
Retinex model [30] that takes into consideration both the contextual
information and light intensity, whereby the main assumption is that
a color image can be decomposed to reflectance and illumination
components to represent the aforementioned elements respectively.
By manipulating the illumination component and merging with the
reflectance, these methods [3–5,25] had shown impressive results and
recently, deep learning approaches have been proposed based on the
Retinex theory as well [7,26]. Additionally, [2,17,18] have proposed
methods that resemble the Retinex theory by implementing the dark
channel prior algorithm made for image dehazing [27]. This approach
is mainly sparked by the observation where inverted low-light images
exhibit similar characteristics to images captured in hazy weather.
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Table 1
Existing research works on low-light image enhancement. Category (A) Statistical methods, (B) Transformational methods.
Cat. Literature Color space Method

A

Huang et al.
(2013)[12]

Value (V) component
of HSV

Adaptive gamma correction with weighted distribution
modification on the intensity histogram.

Lim et al. (2015)
[13]

Grayscale Histogram equalization on Gaussian approximated
distribution of noise-free image pixels.

Łoza et al. (2013)
[14]

Value (V) component
of HSV

Dual-Tree Complex Wavelet Transform (DT-CWT) on V,
exponential contrast enhancement on high-pass wavelet
coefficients and CLAHE on low-pass coefficients.

B

Wu (2011) [15] RGB Optimal contrast tone mapping by linear programming.

Fu et al. (2012) [16] RGB Color estimation model modulated by a single
parameter determined by statistical observation on
large data and then post processed by sparse coding.

Loh and Chan
(2015) [19]

Grayscale Invert local features such as SIFT and HOG using paired
dictionary learning.

Lore et al. (2017)
[24]

Grayscale Stacked sparse denoising autoencoder model trained on
synthesized low-light images.

Wang et al. (2016)
[6]

RGB Global illumination estimation and details
reconstruction using deep learning model

Table 2
Existing research works on low-light image enhancement. Category (C) Retinex methods, (D) Other methods.
Cat. Literature Color space Method

C

Fu et al. (2016) [3] RGB Weighted multi-scale fusion of luminance and contrast
improved illumination component of the Retinex model.

Fu et al. (2016) [4] RGB and HSV Retinex model decomposition by weighted variational
model and illumination enhancement by gamma correction.

Guo et al. (2017) [5] RGB Illumination map estimation and refinement by
structure-aware smoothing model.

Li et al. (2018) [25] Value (V) component
of HSV

Addition of noise term into Retinex model for simultaneous
decomposition and noise reduction.

Shen et al. (2017)
[26]

RGB Multi-scale Retinex using convolutional neural network.

Chen et al. (2018)
[7]

RGB Convolutional neural network for joint Retinex
decomposition and low-light enhancement.

D

Dong et al. (2011)
[17]

RGB Invert low-light image and apply dark channel prior
dehazing algorithm [27].

Zhang et al. (2012)
[18]

RGB Enhancement using dehazing algorithm where light
transmission is estimated from the image luminance instead
of the scene depth as used in the standard dehazing.

Li et al. (2015) [2] RGB Dehazing with adaptive weight coefficient for light
transmission estimation.

Tables 1 and 2 contains the summary of aforementioned literature
related to low-light image enhancement.

Instead, our proposal using  is a statistical model that performs
pixel mapping, which we integrate with features related enhancement
functions for supporting computer vision applications. Thus, the main
difference between our work and these existing studies is that our ob-
jective aims at feature retrieval, contrary to visual quality improvement
only.

3. Problem formulation

The typical aim of low-light image contrast enhancement is to
improve brightness and contrast of a low-light image so that the content
is visible and aesthetically pleasing to observers. This is supported by the
choice of evaluation metrics used in current works [20,24–26], such as
PSNR, and structural similarity index (SSIM) that assess image quality.
Our objective is to perform low-light image enhancement with the
goal of feature retrieval in support of automated vision systems where
illumination and lighting variation is one of the key problems [31]. For
this reason, we reexamine the challenges that are present in low-light
images.

Studies on object detection commonly work on bright images where
the contrast is relatively uniform throughout the image with clear

contrast and details [1], as shown in the bottom row of Fig. 2. Bright
images have high scene luminance provided by strong sources of light,
such as the sun, that is able to encompass large areas. On the contrary,
low-light images have low illumination where the objects’ appearance
lack details and look invisible. This is because the lighting in low-
light environment is provided by limited sources that are comparatively
weaker, such as twilight, street lights, or car lights to name a few. As
a result, objects are only apparent when near to the light source but
become increasingly obscure as they move further away and brings
about considerable illumination variations within one image.

Fig. 3 shows some examples of our analysis on bright (Fig. 3(a)) and
low-light (Fig. 3(b) & 3(d)) images. In the bright images, the average
luminance, 𝑌 from the 𝑌 𝐶𝑏𝐶𝑟 color space, of the patches are relatively
high, above 90, and consistent, where the maximum difference is only
80 between the blue and red boxes of Fig. 3(a). However, in the low-
light images, not only is there lower illumination, the average luminance
reduces when the patches are further away from the light source and
have very large differences (the maximum difference is 159 between
patches of blue and yellow boxes in Fig. 3(b)). Furthermore, when
there are more than one light source available, the luminance variation
becomes even more severe, as shown in Fig. 3(d).

Therefore, in order to formulate a solution for this problem, we look
back at the definition of light behavior in the real world, stated by the
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Fig. 2. A single low-light image comprises varying luminosity (i.e. shadows, many light sources), while the lighting in a bright image is relatively consistent. Top row: Samples of the
real low-light images used in the analysis; Bottom row: Samples of the bright images used in the synthesis. [Best viewed in color].

Fig. 3. Examples of bright 3(a) image, and low-light 3(b) & 3(d) images with their respective enhanced images 3(c) & 3(e), along with their local illumination values and global intensity
histograms. The average luminance (𝑌 of 𝑌 𝐶𝑏𝐶𝑟 color space) of the patches (colored boxes) in the bright image are relatively high and consistent, while the patches in the low-light
images have decreasing values as the distance from the light source increases. [Best viewed in color].

inverse-square law of distance:

𝐸(𝑝) =
𝐿(𝑝)cos2𝜃𝑑𝐴

𝑙2
(1)

where 𝐸 is the irradiance or intensity per unit area on the object, 𝐿 is
the radiance from light source, cos 𝜃 is the foreshortening, 𝑑𝐴 is the
unit area, and 𝑙 is the distance between the light source and object.
Based on this, the light intensity of an object depends on radiance of
the light source (e.g. sun, street lights, etc.), the foreshortening,2 and
distance. Intuitively, the enhancement operation can be understood as
increasing the radiance as the distance increase, however, we note that
such straightforward operation does not fully benefit object features.
For example, the edge of an object as a result of foreshortening is a
notable feature for object detection. Simply reversing the foreshortening
effect or brightening the pixels would diminish its discriminative ability,
thus, in such cases maintaining or darkening the pixels may be more
beneficial for the features. Hence, the low-light image enhancement can
be modeled as:

𝐼𝐵(𝑥) = 𝐼𝐷(𝑥) (𝐿, 𝑙𝑥, 𝜙𝑥), (2)
s.t. 𝐿 =

{

𝐿1, 𝐿2,… , 𝐿𝑖
}

;

𝑙𝑥 =
{

𝑙𝑥1 , 𝑙𝑥2 ,… , 𝑙𝑥𝑗
}

; (3)

𝜙𝑥 =
{

𝜙𝑥1 , 𝜙𝑥2 ,… , 𝜙𝑥𝑗

}

;

where 𝐼𝐵(𝑥) is the enhanced image that has an appropriate contrast and
relative uniform intensity distribution, 𝐼𝐷(𝑥) is the captured low-light
image that has relatively low illuminance, low contrast and intensity
variation, 𝑥 is a pixel or small patch in the image, and  (𝐿, 𝑙𝑥, 𝜙𝑥) is the
mapping operator defined by the light source 𝐿, distance 𝑙 and features
𝜙. However, estimating the mapping operator is not a simple task due
to the following reasons:

• Diverse types of light sources 𝐿 have individual light strength
providing distinct levels of intensity;

2 the reduction of surface area as seen from a particular point of observation.

• Multiple sources of light
{

𝐿1, 𝐿2,… , 𝐿𝑖
}

increases the non-
uniformity of the scene luminance;

• Any point of a scene can locate at a varying distance
{

𝑙𝑥1 , 𝑙𝑥2 ,… ,

𝑙𝑥𝑗
}

between the object and source of light.

• Image pixels may form features of a single or different objects
{

𝜙𝑥1 , 𝜙𝑥2 ,… , 𝜙𝑥𝑗

}

Hence, the best course of action is to perform localized enhancement
on each pixel where not only will that address the varying 𝐿 and 𝑙,
but also the appropriate enhancement can be performed on pixels that
comprise features. Therefore, we transform Eq. (2) into 𝐼𝐵(𝑥) = 𝑓 (𝐼𝐷(𝑥))
where 𝑓 (⋅) represents the set of enhancement functions that models the
relationship of pixels in the low-light image 𝐼𝐷(𝑥) with the target bright
pixels of 𝐼𝐵(𝑥).

4. Proposed method

We have established that the relationship of pixels between 𝐼𝐷(𝑥)
and 𝐼𝐵(𝑥) are localized, hence 𝑓 (⋅) is not a single function acting on all
pixels, but a collection of different functions that acts on the respective
pixels. Therefore, we propose the use of the Gaussian Process () to
constrain the enhancement functions into a distribution of functions.

4.1. Gaussian Process revisited

A Gaussian Process defines a distribution over function 𝑓 that
estimates an output 𝑦 from the marginal distribution of functions
P(𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑘)) of finite inputs 𝑥 =

{

𝑥1, 𝑥2,… , 𝑥𝑘
}

. It is param-
eterized by a mean function 𝑚(𝑥) and a covariance function 𝑘(𝑥𝑡𝑟, 𝑥𝑡𝑠)
such that 𝑓 (𝑥) ∼ (𝑚(𝑥), 𝑘(𝑥𝑡𝑟, 𝑥𝑡𝑠)), where the joint distribution of
training and test outputs is:
[

𝑦𝑡𝑟
𝑦𝑡𝑠

]

∼ 
([

𝑚(𝑥𝑡𝑟)
𝑚(𝑥𝑡𝑠)

]

,
[

𝐾(𝑥𝑡𝑟, 𝑥𝑡𝑟) 𝐾(𝑥𝑡𝑟, 𝑥𝑡𝑠)
𝐾(𝑥𝑡𝑠, 𝑥𝑡𝑟) 𝐾(𝑥𝑡𝑠, 𝑥𝑡𝑠)

])

. (4)
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Fig. 4. Our intuition is to have localized enhancement functions for each region/pixel, hence we utilized  to govern them into a distribution of functions. (Top: Low-light image,
Bottom: Contrast enhanced image). [Best viewed in color].

Fig. 5. Overall framework of the low-light image enhancement using  regression. As the construction of the  requires both input and output training data, a CNN is engaged as the
intermediate model for output data generation. [Best viewed in color].

𝑦𝑡𝑟 refers to the training outputs and 𝑦𝑡𝑠 is the testing outputs in which
𝑦 = [𝑦𝑡𝑟, 𝑦𝑡𝑠]. Similarly, 𝑥 = [𝑥𝑡𝑟, 𝑥𝑡𝑠] are the training and testing
inputs. 𝐾(𝑥𝑡𝑟, 𝑥𝑡𝑠) denotes the covariance matrix between the training
and testing inputs, along with 𝐾(𝑥𝑡𝑟, 𝑥𝑡𝑟), 𝐾(𝑥𝑡𝑠, 𝑥𝑡𝑟), and 𝐾(𝑥𝑡𝑠, 𝑥𝑡𝑠)
as the covariance of their respective pairings. Given the observa-
tion 𝑦𝑡𝑟 from 𝑥𝑡𝑟, the output 𝑦𝑡𝑠 can be estimated with 𝑥𝑡𝑠 from
the conditional distribution P(𝑦𝑡𝑠|𝑥𝑡𝑟, 𝑦𝑡𝑟, 𝑥𝑡𝑠) ∼  (𝜇,𝛴) where 𝜇 =
𝑚(𝑥𝑡𝑠) + 𝐾(𝑥𝑡𝑠, 𝑥𝑡𝑟)[𝐾(𝑥𝑡𝑟, 𝑥𝑡𝑟)]−1(𝑦𝑡𝑟 − 𝑚(𝑥𝑡𝑟)) and 𝛴 = 𝐾(𝑥𝑡𝑠, 𝑥𝑡𝑠) −
𝐾(𝑥𝑡𝑠, 𝑥𝑡𝑟)[𝐾(𝑥𝑡𝑟, 𝑥𝑡𝑟)]−1𝐾(𝑥𝑡𝑟, 𝑥𝑡𝑠).

4.2. Modeling contrast enhancement with 

Our objective is to estimate a corresponding enhanced image 𝐼𝐵
given a single low-light image 𝐼𝐷. As we have determined that the
enhancement functions for low-light images are localized, the distribu-
tion of functions P(𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑘)) are therefore the varied local
luminance mapping functions as shown in Fig. 4, where the inputs 𝑥
refer to local patches or pixels in the low-light image.

Specifically, in our implementation the testing inputs are the pixels
from the low-light image, i.e. 𝑥𝑡𝑠 =

{

𝑝𝐷|𝑝𝐷 ∈ 𝐼𝐷
}

, while the testing
outputs are the corresponding reference pixels, i.e. 𝑦𝑡𝑠 =

{

𝑝𝐵|𝑝𝐵 ∈ 𝐼𝐵
}

.

Fig. 5 shows the overall flow of the proposed enhancement framework
where the reference pixels for training the  is provided by a trained
CNN model that extract features and project them into pixel space.

The construction of the  is specified by mean and covariance
functions given the data. Hence, for these priors, we use the zero mean
function 𝑚(𝑥) = 0 to simplify the modeling process and allow the
relationship between 𝑥𝑡𝑟 and 𝑥𝑡𝑠 to be fully defined by the covariance
function 𝑘(𝑥𝑡𝑟, 𝑥𝑡𝑠). We chose squared exponential as the covariance
function:

𝑘(𝑥𝑡𝑟, 𝑥𝑡𝑠) = 𝜎2𝑓 exp
(

−
(𝑥𝑡𝑟 − 𝑥𝑡𝑠)2

2𝑑2

)

, (5)

where hyperparameters, 𝜎2𝑓 is the data variance, and 𝑑 is the length scale
that defines the smoothness of the  . These hyperparameters 𝜃 =
{

𝜎𝑓 , 𝑑
}

determines the form of the distribution of function, and are
inferred from the low-light data using conjugate gradients to optimize
the log marginal likelihood: L = logP(𝑦𝑡𝑟|𝑥𝑡𝑟, 𝜃 ). As the posterior
distribution is data dependent, each image is therefore enhanced by
image exclusive optimal hyperparameters in our framework. For the
training data, we define the patches of 𝑚 × 𝑛 pixels of the given low-
light image 𝐼𝐷 as the training inputs 𝑥𝑡𝑟 whereas the training outputs
𝑦𝑡𝑟 are patches of the similar pixels dimension and spatial location
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Fig. 6.  training input 𝐼𝐷 (in luminance channel, 𝑌 ) and output 𝐼𝐸 , and training data
optimization. Note that the training data 𝑥𝑡𝑟 and 𝑦𝑡𝑟 are corresponding patches from 𝐼𝐷
and 𝐼𝐸 respectively, enabling edge/texture relationships to be preserved in the  . If there
are multiple patches pairs that are similar, only one pair is used for training to minimize
computational cost. [Best viewed in color].

from a corresponding reference 𝐼𝐸 , as illustrated in Fig. 5. To this
end, the training inputs 𝑃𝐷 =

{

𝑃𝐷,1, 𝑃𝐷,2,… , 𝑃𝐷,𝑘
}

and outputs 𝑃𝐸 =
{

𝑃𝐸,1, 𝑃𝐸,2,… , 𝑃𝐸,𝑘
}

are the average intensities of local patches, 𝑃𝐷 =
{

𝑃𝐷,1, 𝑃𝐷,2,… , 𝑃𝐷,𝑘|𝑃𝐷 ⊆ 𝐼𝐷
}

and 𝑃𝐸 =
{

𝑃𝐸,1, 𝑃𝐸,2,… , 𝑃𝐸,𝑘|𝑃𝐸 ⊆ 𝐼𝐸
}

.
From our study, we found that the sizes of 𝑃𝐷 and 𝑃𝐸 heavily

influence the posterior distribution and quality of the enhancement,
where smaller sizes give better results. This is because the region
size constrains the precision of the mapping distribution. As the size
decreases, more constraints are introduced and brings more precise
distribution. However, there is a trade-off where more constraints will
drastically increase the computational cost. Due to this reason, we
searched for an inflection point, and fixed 𝑃𝐷 and 𝑃𝐸 as patches of
4 × 4 pixels. In addition, many patches in an image bear a superficial
resemblance, we therefore further optimize the computation by using
only one region-pair instead of multiple similar ones as shown in
Fig. 6, i.e.

{

𝑥𝑡𝑟, 𝑦𝑡𝑟
}

=
{

𝑃𝐷,𝑖, 𝑃𝐸,𝑖
}

if
{

𝑃𝐷,𝑖 ≈ 𝑃𝐷,𝑗 |
{

𝑃𝐷,𝑖, 𝑃𝐷,𝑗
}

⊂ 𝑃𝐷
}

∨
{

𝑃𝐸,𝑖 ≈ 𝑃𝐸,𝑗 |
{

𝑃𝐸,𝑖, 𝑃𝐸,𝑗
}

⊂ 𝑃𝐸
}

where 𝑖 ≠ 𝑗. The average intensity of
the patches are used as the similarity measure.

4.3.  Training data

The  is able to model low-light enhancement as localized func-
tions, hence, able to differentiate the functions to brighten, maintain, or
even darken the pixels for best results. By itself, the  , akin to other
statistical models, will build a distribution based on the given input and
output training pixels irregardless of the spatial structure or features.
Thus, the challenge is to provide the training data where the input and
output training pixels reflect the features of the image.

For this reason, we adopt a CNN model to learn the feature to pixel
relationship from a large external data which will then be provided to
the  to construct the distribution. The choice of CNN for this learning
is due to its renowned ability to learn features in an unsupervised man-
ner from a supervised task training and also its successful performance
in pixel-wise transformation works such as image denoising [32] and
super-resolution [33]. We also note that there are works that adopt
CNNs to directly perform the enhancement [6,7], however, we observed
that such models are still lacking with respect to the localized problem
of low-light enhancement. As known, CNN models consist of a set design
of layers and parameters to be trained from a large collection of data.
The multi-layered approach can provide multi-function enhancement,
however, once the model is trained, the enhancement functions are
fixed for one optimal enhancement across different images, i.e. globally
optimized. On the contrary, our intuition for solving this problem
comes from the study of low-light image and the necessity for localized
enhancement, which lead us to propose the  as a locally optimized

solution, and thus we merely used the CNN to provide the specified data
for training the  .

We modified [33]’s architecture by incorporating an additional layer
to achieve our objective as shown in Fig. 7. The CNN model is trained
to perform synthetic low-light image 𝐼𝐷𝑠

to bright image 𝐼𝐵 mapping
operation 𝑔 ∶ 𝐼𝐷𝑠

↦ 𝐼𝐵 where weights of the trained model capture
representative features of a low-light image and projected back to pixel
values in the bright spectrum as a result. Hence, whenever given a real
low-light image 𝐼𝐷, the model will be able to extract object features
and produce pixel values, as seen in Fig. 6 as example, to be the output
training data 𝐼𝐸 for the  .

We used the Mean Squared Error (MSE) as the loss function to train
the model:

(𝐼𝐸 , 𝐼𝐵) =
1
𝑛

𝑛
∑

𝑖=1

‖

‖

𝐼𝐸 − 𝐼𝐵‖‖
2 (6)

= 1
𝑛

𝑛
∑

𝑖=1

‖

‖

𝑔(𝐼𝐷|𝜃CNN) − 𝐼𝐵‖‖
2 , (7)

where 𝑛 refers to the number of training data. This function is minimized
by stochastic gradient descent and backpropagation with the following
weight and bias updates for each layer:

𝑤new
𝑖 = 𝑤old

𝑖 − 𝜂𝑖
𝜕𝑔
𝜕𝑤

(𝑤old
𝑖 ), 𝑏new

𝑖 = 𝑏old
𝑖 − 𝜂𝑖

𝜕𝑔
𝜕𝑏

(𝑏old
𝑖 ) (8)

where 𝑖 = {1, 2, 3, 4}, 𝑤 are the convolution weights, 𝑏 are the biases, and
𝜂𝑖 is the learning rate for the convolution layers. We set 𝜂1 = 𝜂2 = 10−4,
and 𝜂3 = 𝜂4 = 10−5 to promote network convergence. It should be noted
that the aim is not to train the model to replicate the exact bright image,
but to reconstruct the extracted features into pixel space. Therefore,
minimizing MSE updates the weight to produce the reference pixels 𝐼𝐸
to be in the range of pixel values from real images as it is a crucial
element for building an appropriate  distribution.

4.3.1. CNN training
To the best of our knowledge, currently available data make use of

exposure settings to simulate bright and low-light data [7,20]. However,
the scope of our study is targeted on real low-light images with dynamic
objects, similar to those provided by [1], which is impractical to be
simulated with varying camera exposure. Therefore, we synthetically
darken real bright images 𝐼𝑏 containing objects to generate the artificial
low-light counterpart 𝐼𝑑 . This will enable us to generate a significantly
large amount of data to train the CNN model for feature extraction and
pixel mapping.

The darkening operation we used is a combination of contrast scaling
and gamma correction:

𝐼𝑑 = 𝐶𝑙𝑖𝑚𝐼
𝛾
𝑏 , (9)

where 𝐶𝑙𝑖𝑚 is the upper intensity limit of 𝐼𝑑 and 𝛾 is the gamma value.
Different combinations of 𝐶𝑙𝑖𝑚 and 𝛾 are applied to generate different
levels of low-light images to be learned.

A similar approach is used by [24] to generate their training data as
well, however we justify our scheme by doing an analysis on real low-
light images in comparison to our synthesis outcome. We extracted 150
low-light images from the ExDark dataset, inclusive of both indoor and
outdoor environments, for analysis. Examples of these images are shown
in Fig. 2. These images were divided into non-overlapping patches and
the average luminance of each patch was obtained. These values were
then binned and the distribution trend was observed for patch sizes of
9 × 9, 17 × 17 and 32 × 32. As shown in Fig. 8(a), the number of patches
extracted in the real low-light images logarithmically decreases as the
intensity level increases, irrespective of the patch sizes.

Based on this observation, we expected that by synthetically dark-
ening bright images using Eq. (9), the low-light image patches could
exhibit a similar trend. To this end, 150 bright images were randomly
sampled from the Microsoft COCO dataset (MS COCO) [34] (examples
shown in bottom row of Fig. 2), where Fig. 8(b) shows that the distri-
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Fig. 7. Convolutional Neural Network architecture used for generating  training output.

Fig. 8. Distribution comparison of average intensities of image patches. (a) Between different patch sizes from the real low-light images only. (b) Between patches from both the real
and synthesized low-light images with patch size of 32 × 32. [Best viewed in color].

Fig. 9. Examples of low-light images synthesized from one bright image using different configurations. (a) 𝐶𝑙𝑖𝑚 = 250, 𝛾 = 1; (b) 𝐶𝑙𝑖𝑚 = 200, 𝛾 = 2; (c) 𝐶𝑙𝑖𝑚 = 150, 𝛾 = 3; (d) 𝐶𝑙𝑖𝑚 = 100, 𝛾 = 4;
(e) 𝐶𝑙𝑖𝑚 = 50, 𝛾 = 5.

bution of average luminance in their patches (blue) greatly differs from
the low-light images (black). We then darken these bright images with
the combination of 𝐶𝑙𝑖𝑚 = {250, 200, 150, 100, 50} and 𝛾 = {1, 2, 3, 4, 5}
to produce 25 levels of darkening for a single bright patch. Fig. 9
shows five examples of different darkening levels of the same image.
The intensity distribution of the synthesized patches of size 32 × 32
shows a similar trend (red) as that of real low-light image patches
in Fig. 8(b), particularly for lower intensity levels. Though synthetic,
this approximation towards real data is sufficient to train a reliable
transformation model and more importantly enable the generation of
large enough data for the CNN model to be optimized across many
variations of low-light conditions. Subsequently, the model can produce
reliable training data for the  .

5. Experiments

This section describes the implementation details of our proposed
method, including training data, and evaluation results in comparison
to the latest work in low-light image contrast enhancement. We compare

our proposal to the state-of-the-arts including CLAHE [28], Li et al.
(LACE) [2], Fu et al. (FBE) [3], Fu et al. (WVM) [4], Guo et al.
(LIME) [5], Li et al. (SRRM) [25], Tanaka et al. (GBLE) [35], Wang
et al. (GladNet) [6], and Chen et al. (RetinexNet) [7]. LACE [2] is
the luminance adaptive contrast enhancement method built up from
the image haze removal algorithm [27], without the denoising module
stated in the paper. To establish a fair comparison with the other
methods that do not explicitly deal with noise, the code of [2] is
reimplemented from [27]3 based on the details given by the paper
whereas the codes of [3],4 [4],5 [5],6 [35],7 [25],8 [6],9 and [7]10 were
used as provided by the authors.

3 https://github.com/sjtrny/Dark-Channel-Haze-Removal.
4 http://smartdsp.xmu.edu.cn/weak-illumination.html.
5 http://smartdsp.xmu.edu.cn/cvpr2016.html.
6 https://sites.google.com/view/xjguo/lime.
7 http://www.ok.sc.e.titech.ac.jp/res/IC/LowLight/.
8 http://www.icst.pku.edu.cn/struct/Projects/RRM.html.
9 https://github.com/weichen582/GLADNet.

10 https://daooshee.github.io/BMVC2018website/.
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Fig. 10. Example of the contrast enhancement on a real low-light image, and the intensity of each pixel before and after enhancement of the respective methods (arranged in ascending
order of pixel values from the original low-light image). [Best viewed in color].

We use the conventional quality metric as well as propose new
information retrieval metrics to validate our method. These quantitative
evaluations were performed on a sub-dataset we sampled from the
validation data of MS COCO that consists of 300 bright images which we
darken according to the scheme stated in Section 4.3.1. This gives a total
of 7,500 testing images for quantitative evaluation. We also make use
of the real low-light images from the ExDark dataset [1] for qualitative
assessment.

5.1. Implementation details

Generally, our proposed method can be applied to images in RGB
color space, grayscale, or even luminance (𝑌 ) channel. Our experimental
implementation uses the luminance channel 𝑌 for lower computation
complexity, whereas the chrominance components (𝐶𝑏𝐶𝑟) are unaltered
and only used for producing the final colored image. Similarly, the
reference pixels estimated by the CNN model is in the 𝑌 channel.

For the CNN training data, we used the entire MS COCO training set
which contains 82,783 images for the synthesis. Each image provides
26 training pairs (including the original bright patch paired with itself),

hence providing a total of 2,152,358 images for CNN training and
validation. The CNN model was trained using the full images resized to
256 × 256 pixels and normalized to the range of [0, 1]. We chose to train
the model using full images to retain the contextual information and
high level features of objects within the images, which would otherwise
be ‘‘broken’’ if patches were extracted from the training images instead.
Therefore, the CNN trained with full images would ensure the model
is able to capture effective object features, whereas the local intensity
variation will be dealt with by the  .

5.2. Qualitative evaluation

We first compare the results of our proposed method qualitatively
with the state-of-the-arts. Fig. 10 shows an example of real low-light
image with irregular lighting and the results produced by each method.
In the regions bounded by the blue boxes, we can see that all methods
result in better contrast after the enhancement. Our method, and LIME
show the best brightness, contrast and sharpness, for example, the
bicycle wheel bounded by the red boxes. However, LIME’s result has
more noise and color distortion as shown in the yellow bounding
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Fig. 11. Example of the contrast enhancement on a synthesized low-light image, and the intensity of each pixel before and after synthesis and enhancement (arranged in ascending order
of pixel values from the original bright image). [Best viewed in color].

boxes. It can be observed that the area next to the light source appears
noisy with unnatural pinkish hue whereas our result look more natural.
Moreover, the result by GBLE has the ‘‘halo’’ effect and the RetinexNet
appears very artificial.

This observation is similar to the results of the synthesized low-
light image in Fig. 11. The cow in the red bounding box and edges of
the tree in the yellow bounding box of our result have better contrast
than most of the methods whereas LACE, LIME and SRRM suffer from
color distortions, such as the clouds in the blue bounding box showing
a purplish hue. LIME does have the most aesthetically pleasing result
contributed by its vibrant colors, nonetheless the details retrieved by
our proposed method are still comparable even though not as apparent
to us because human perceptions are sensitive to colors.

We also show that our proposal indeed enhances the darkened
sample towards the original image in the pixel intensity distributions in
Figs. 10 and 11. Our results’ are very much less scattered than CLAHE,
LACE, and GBLE while the distributions of FBE, WVM, and SRRM
are still lower than the pixel value of the original bright image (blue
curve) indicating under enhancement. As for LIME, the distribution
is able to somehow match the original bright image but is relatively
more scattered. Moreover, we found that LIME particularly fails in
some scenarios as shown in Fig. 13. GladNet also shows a very good

result with a matching distribution shape, however, the values are still
slightly low while contrarily, the distribution of the result by RetinexNet
shows a distinct difference from the rest, corresponding to its artificial
output. Especially notable in Fig. 11 is the result of our proposed 
model where it produced a distribution that closely matches the original
bright image. We attribute this to the ability of our model to perform
localized enhancement that allows structural awareness contributed by
the features information.

More examples of results are shown in Fig. 12–13 where various
common problems arise for the current state-of-the-arts while our
proposed method is still able to perform well. One of which is the noise
problem, as shown in Fig. 12, that is particularly obvious for LIME,
GBLE, and RetinexNet, whereas methods like LACE, FBE, and SRRM
over enhance when a light source such as a street light is captured
in the image. GladNet’s result even has a slight ‘‘ring’’ of light on the
surroundings. The examples in Fig. 13 shows obvious color distortions
such as an unnaturally blue sea, and a reddish toilet seat. However, we
do note that our results’ lack color vibrancy because we only address the
luminance channel in our model, but we show that it is not a hindrance
to our target for higher level applications in the quantitative evaluations.
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Fig. 12. Contrast enhancement results of real low-light images.

184



Y.P. Loh, X. Liang and C.S. Chan Signal Processing: Image Communication 74 (2019) 175–190

Fig. 13. Contrast enhancement results of synthesized low-light images.
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Table 3
Average PSNR, computation time, precision, recall, and 𝐹 -scores of feature matching.

Approach PSNR Time (s) Features matching

Precision Recall 𝐹1-score 𝐹2-score

Darkened 10.44 (±0.120) – 0.4514 0.1711 0.2090 0.1824

CLAHE [28] 12.03 (±0.084) 0.02 0.4632 0.3928 0.3404 0.3549
LACE [2] 14.95 (±0.077) 15.97 0.6358 0.4305 0.4820 0.4445
FBE [3] 14.68 (±0.087) 0.17 0.5959 0.4659 0.4831 0.4639
WVM [4] 12.88 (±0.102) 3.03 0.5794 0.3458 0.3722 0.3496
LIME [5] 15.08 (±0.075) 0.07 0.3205 0.6463 0.4076 0.5062
SRRM [25] 14.10 (±0.083) 4.71 0.5779 0.3395 0.3714 0.3466
GBLE [35] 13.26 (±0.073) 0.24 0.2284 0.3303 0.2513 0.2850
GladNet [6] 18.32 (±0.077) 0.04 0.5388 0.5704 0.5200 0.5403
RetinexNet [7] 14.63 (±0.052) 0.05 0.4477 0.2073 0.2594 0.2230

Proposed 16.25 (±0.078) 1.25 0.4745 0.6563 0.5292 0.5871

Table 4
Average 𝑙1-norm distance of global color intensity histogram, and local 32 × 32 pixels
patch intensity histograms.

Approach Global Local

Darkened 3.96 × 105(±2.85 × 103) 587.0 (±3.56)

CLAHE [28] 3.14 × 105(±1.62 × 103) 536.4 (±2.29)
LACE [2] 2.95 × 105(±2.54 × 103) 518.2 (±2.14)
FBE [3] 2.89 × 105(±2.70 × 103) 505.8 (±2.49)
WVM [4] 3.28 × 105(±2.99 × 103) 540.9 (±2.68)
LIME [5] 2.73 × 105(±2.55 × 103) 492.8 (±1.41)
SRRM [25] 3.00 × 105(±1.33 × 103) 524.2 (±2.16)
GBLE [35] 2.89 × 105(±1.69 × 103) 505.5 (±2.25)
GladNet [6] 2.26 × 105 (±1.15 × 103) 447.6 (±2.30)
RetinexNet [7] 2.70 × 105(±1.10 × 103) 490.0 (±1.85)

Proposed 2.54 × 105 (±0.98 × 103) 477.0 (±1.21)

5.3. Quantitative evaluation

Our quantitative assessments were carried out on 3 evaluation
metrics: the PSNR, local features matching, and 𝑙1-norm color histogram
distance. We show the measures of the synthetically darkened test
images enhanced by LACE, FBE, WVM, LIME, SRRM, GBLE, GladNet,
RetinexNet, and our proposed framework, the  .

5.3.1. PSNR
Table 3 shows the average PSNR results (with their 95% confidence

intervals) calculated for all RGB channels of the tested images, and
the average processing time for images of size 256 × 256 pixels. Our
proposed method shows comparable performance to the state-of-the-
art solutions with satisfactory computation time11. However, we note
a conflict with the qualitative assessment in Figs. 10 and 11 where
LACE, FBE, and WVM produced images with better visual quality
than the RetinexNet model however, the average PSNR of RetinexNet
is comparable or better than them. Fig. 14 additionally shows three
examples enhanced by all the methods where the PSNR displays similar
inconsistency. The results of RetinexNet appear quite unnatural and
have notable noise, particularly in the top and bottom examples, but
still show better PSNR values.

Based on this finding, we believe that PSNR is not the ideal measure
for low-light image enhancement. Moreover, such quality measurements
do not bring out the significance of low-light image contrast enhance-
ment for feature retrieval in support of higher level application such as
detection. We therefore introduce local features matching and histogram
𝑙1-norm distance as new metrics to evaluate the ability of enhancement
algorithms to improve valuable details of low-light images.

11 We used Intel Xeon Processor E5-2623 v3 at 3.00 GHz without GPU
acceleration for testing.

5.3.2. Local features matching
Before the breakthrough of learned features, local features were the

forerunners for detection and recognition tasks, and are still used in
part to this day [36–38]. Hence, we make use of detected local features
as a gage for useful information content retrieved by enhancing low-
light images. Furthermore, we heighten the reliability of this measure by
matching features detected from the enhancement results to the original
bright image to ensure the retrieved details are not ‘‘false" features from
noise and artifacts created by the enhancements. We then calculate the
precision 𝑃𝑟, recall 𝑅𝑐, and 𝐹 -score based on the information retrieval
context as follows:

𝑃𝑟 =
|

|

𝑞𝑟𝑙𝑣 ∩ 𝑞𝑟𝑡𝑣||
𝑞𝑟𝑡𝑣

;𝑅𝑐 =
|

|

𝑞𝑟𝑙𝑣 ∩ 𝑞𝑟𝑡𝑣||
𝑞𝑟𝑙𝑣

;𝐹𝛽 -score = (1 + 𝛽2) 𝑃𝑟 ⋅ 𝑅𝑐
(𝛽2 ⋅ 𝑃𝑟) + 𝑅𝑐

,

(10)

where 𝑞𝑟𝑙𝑣 refers to feature points extracted from the original bright
image and 𝑞𝑟𝑡𝑣 are feature points from the enhanced image, while
|

|

𝑞𝑟𝑙𝑣 ∩ 𝑞𝑟𝑡𝑣|| indicates the correctly matched points. 𝛽 is the weight
variable for the precision and recall in computing the 𝐹 -score. A higher
𝛽 puts more weight on recall than precision.

In our experiments, we use SIFT [39] as the local features for evalu-
ation as it can serve as a fast, lightweight and impartial measurement,
instead of trained features that are very data reliant. We set the peak
threshold to be 10 so as to only remain points detected from regions with
strong contrast, and define correctly matched points as features with
matching descriptors, location, scale and orientation. We emphasize on
the useful information that enhancement can retrieve, hence the results
were recall is more weighted with 𝛽 = 2 (𝐹2-score) is included in our
evaluation. Table 3 shows that our proposed method outperforms all
methods in recall, as well as both 𝐹1 and 𝐹2 scores. We analyzed and
found that the LACE method has the best precision because it retrieves
less local features in total. Even so, for the average scores where at equal
weights for precision and recall in the 𝐹1-score, their performance fall
behind while our proposed method is best performing. We also note
that the GladNet shows the most balanced performance among all the
methods with a comparable 𝐹1-score to ours.

Fig. 14 shows some examples of the features detected from the
enhancement results and matched to the features detected in the original
bright images. The darkening of the images significantly impacts the
features extractable from the objects, particularly in the bottom row
example of Fig. 14 where the synthesized low-light image only have
two features matched. Nevertheless, each enhancement method is able
to retrieve some features, particularly, our proposed  with the most
retrievals. Moreover, the examples also showed that, high PSNR does
not translate to better feature retrieval. Both LIME and GladNet are
admittedly the best performing methods visually, as seen in Fig. 14,
but from the standpoint of practicality, the feature retrieval our method
achieved is more useful.

5.3.3. 𝑙1-norm
The second evaluation method we propose is the histogram distance

measure using 𝑙1-norm. We calculated the 𝑙1-norm between color his-
tograms of the original bright image and the enhanced images. We
performed the comparison on both global image intensity histogram
and the histograms of local patches in the image. We obtain the local
histograms by dividing the image into non-overlapping patches of
32 × 32 pixels and then calculate the average distance of all the patches.
We set the intensity histograms to have 32 bins for our assessment.

Table 4 shows the average distance of the color histogram distance
measure and their 95% confidence intervals. Similar to features re-
trieval, the enhancement methods were able to shorten the distance of
both types of histograms. While GladNet is the best performing method
in this evaluation, our proposed method comes in at second place for
both global and local histogram measures as marked in italics, with
comparable results even though we did not explicitly enhance the color
content like the others. We deduced that, in the efforts of enhancing the
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Fig. 14. PSNR values and SIFT features matched in synthetic low-light images using different enhancements methods. [Best viewed in color].

low-light images, most of the methods skewed the color spectrum, hence
the mismatch with the reference image, as notable in the top example
of Fig. 14 where the black suit jacket of the man has been altered to
be blue, particularly by LACE and RetinexNet. Contrarily, our method is
able to bring the image closer to the original state, although less pleasing
to human observation.

5.4. Study of  training data

In our proposed framework, we stressed on the aim to perform
localized enhancement for features retrieval. The training of the 
depends on the data that would provide the necessary enhancement
relationship of features, which we do so by a CNN model. The CNN
model learns image features and projects them into pixel values to act
as the training output for the runtime training of the  .

We therefore conducted a study by using various state-of-the-art en-
hancement methods to provide the reference pixels for the  training.
We selected the CLAHE, LIME, and GladNet for this study as CLAHE

Table 5
Performance of  using training output generated by our CNN, CLAHE, LIME, and
GladNet.

Approach PSNR Features matching Histogram 𝑙1-norm

Precision Recall 𝐹1-score 𝐹2-score Global Local

CNN 16.25 0.4745 0.6563 0.5292 0.5871 2.54 × 105 477.0
CLAHE [28] 14.03 0.4478 0.4726 0.4250 0.4407 2.93 × 105 521.8
LIME [5] 15.58 0.4287 0.5850 0.4679 0.5187 2.62 × 105 484.7
GladNet [6] 17.04 0.5054 0.6511 0.5433 0.5918 𝟐.𝟒𝟒 × 𝟏𝟎𝟓 465.7

is a well established and fast contrast enhancement method, while
LIME is due to its visual vibrancy, and GladNet for its overall balanced
performance in our evaluations.

Table 5 shows the average performance of different models where
using our original model still achieve the best recall, though the training
by GladNet shows improved results for all the other evaluations. On
the other hand, the performance of the s trained by the pixels from
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Fig. 15. PSNR values and SIFT features matched in synthetic low-light images using  trained by different reference values. [Best viewed in color].

Fig. 16. Top 5 object classification results of low-light image (top), enhanced by our proposed method (middle), and enhanced by GladNet (bottom), using ResNet-101 trained on
ImageNet. [Best viewed in color].

CLAHE and LIME are unable to compete with the deep models. We
make two deductions from these results. First, the CLAHE and LIME
are unable to provide the  with features aware reference data for the
training. As we note, these methods enhances the visual aspects of the
low-light images, where they do not explicitly consider the structures
of the content for the enhancement. Therefore, the  is not a simple
pre-processing algorithm.

The second deduction is based on the results using our CNN model
and GladNet that significantly outperforms both the CLAHE and LIME
training. These results clearly support our intuition that the ability of
CNNs to capture the necessary features to pixels relationship provides
the  with the appropriate reference values for training the model.
We note that the GladNet architecture is very much more complex than

our 3-layer CNN, hence we believe the slight performance boost is in

its ability to learn better features. More importantly, we attribute this

increment to the localized enhancement brought by the distribution

modeling of the  that is lacking in CNN-based models, as made

apparent by the results of our framework surpassing that of CNN only

models, i.e. GladNet and RetinexNet. Fig. 15 shows example results from

this study. Except for the CLAHE trained model that suffers from under

enhancement, the results from models trained by LIME and GladNet

shows similar quality to our proposed model.
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5.5. Object classification test

In this section, we take a step further to look into the potential of
low-light image enhancement in assisting the popular computer vision
task, object classification. To do so, we performed tests using the 101-
layer Residual Network [40] (ResNet-101) on real low-light images, and
their enhanced versions by our proposed framework and also GladNet.
We directly used the ResNet-101 model that is trained on ImageNet12 to
do the classification without any re-training or fine-tuning involved as
we would like to observe the outcome of the originally optimized model
when given low-light and enhanced images.

Fig. 16 shows example of the results we obtained where we can
see notable changes in the classification results before and after the
enhancements have been done. For the left example, the model is unable
to classify the bottle of wine in the low-light image, likely due to the
low illumination as compared to the candle. The image enhanced by
our model enabled the model to not only detect the candle, but also
the initially missed wine bottle. On the other hand, the GladNet result
seem to have deteriorated the image for the classification, even though
for human vision, it is easier for us to see. Nevertheless, the right
example shows that both enhancements are able to somewhat improve
the performance, classifying the car as a taxi that was missed by the
model in the original low-light image.

This test illustrates the feasibility of incorporating image enhance-
ment as a support for practical applications. Additionally, this demon-
stration also shows that our proposed method can indeed serve as
a backing for tasks such as object classification and our proposed
evaluation metrics is consistent with the purpose we have set them out
to assess.

6. Conclusion

In this paper, we look into the enhancement problem with the
objective of information retrieval instead of aesthetic restoration. We
modeled low-light image enhancement as a distribution of localized
enhancement functions using Gaussian Process trained at runtime with
reference data generated from a CNN. We trained the CNN using large
data synthesized based on luminance statistics of real images so that
it learns the relationship of feature to pixel values. Thus, the refer-
ence generated trains the  to perform features aware enhancement.
Furthermore, we introduced two information retrieval assessment that
points out the practicability of enhancement results for high level
applications instead of the traditional image quality assessment that
has been widely used in the field. Our proposed framework is a new
approach that is unlike the conventional low-light image enhancement
methods and shows competitive performance, both qualitatively and
quantitatively, in the new evaluation metrics. Additionally, our analysis
found that the PSNR quality metric miss assesses image quality where
evidently artificial images are still given high scores, hence, our shift of
focus with the new evaluation metrics would bring a new direction to
the field.

In the future work, we intend to further improve low-light object
detection to meet the underlying motivation of this research work,
meanwhile, to also address the noise issue that commonly affects camera
sensors when capturing low-light images, as well as improve the color
reproduction.
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