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a b s t r a c t 

Automatic generation of caption to describe the content of an image has been gaining a lot of research 

interests recently, where most of the existing works treat the image caption as pure sequential data. 

Natural language, however possess a temporal hierarchy structure, with complex dependencies between 

each subsequence. In this paper, we propose a phrase-based image captioning model using a hierarchical 

Long Short-Term Memory (phi-LSTM) architecture to generate image description. In contrast to the con- 

ventional solutions that generate caption in a pure sequential manner, phi-LSTM decodes image caption 

from phrase to sentence. It consists of a phrase decoder to decode the noun phrases of variable length, 

and an abbreviated sentence decoder to decode the abbreviated form of the image description. A com- 

plete image caption is formed by combining the generated phrases with sentence during the inference 

stage. Empirically, our proposed model shows a better or competitive result on the Flickr8k, Flickr30k 

and MS-COCO datasets in comparison to the state-of-the art models. We also show that our proposed 

model is able to generate more novel captions (not seen in the training data) which are richer in word 

contents in all these three datasets. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Automatic caption or description generation from images is a

challenging problem that requires a combination of visual and lin-

guistic information. In other words, it requires not only complete

image understanding, but also sophisticated natural language gen-

eration [1,2] . This is what makes it such an interesting task that

has been embraced by both the computer vision and natural lan-

guage processing communities. 

Over the past few years, one of the most common frameworks

applied in this line of research is a neural network model that

composed of two sub-networks [3–7] , where a convolutional neu-

ral network (CNN) is used to encode an image into a feature rep-

resentation; while a recurrent neural network (RNN) is applied to

decode it into a natural language description. In particular, the

Long Short-Term Memory (LSTM) model [8] has emerged as the

most popular RNN architecture, as it has the ability to capture

long-term dependency and preserve sequence. Recently, many vari-

ants of this LSTM framework were introduced and achieved good

results, such as those with attention mechanism [9–12] and at-

tributes [13–15] . However, we notice that most of these works

decode image caption in a fully sequential word-by-word basis.
∗ Corresponding author. 
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lthough sequential model is appropriate for processing senten-

ial data, it does not take other syntactic structure of language into

onsideration in its modeling. 

In fact, natural language is a sequential data that has temporal

ierarchy, with information spread out over multiple time-scales

16] . Consider English as an example, the lowest level with the

hortest time-scale is characters, followed by words, phrases,

lauses, sentences to documents. Therefore, it is undeniable that

entence structure is one of the prominent characteristics of

anguage. Victor Yngve, an influential contributor in linguistic

heory stated in 1960 that “language structure involving, in some

orm or other, a phrase-structure hierarchy, or immediate constituent

rganization ”[17] . Hence, forcing a generative model to train on

at sequences and then generate a high-level structure locally, in

 step-by-step basis often results in limited performance [18] . For

mage caption in particular, it can be observed that there are at

east two levels of structure in those human annotated captions

rovided in the public datasets such as Flickr8k, Flickr30k and

S-COCO. Within each of the caption, there are several phrases

hat describe the objects in an image. These phrases have equal

ime-scale resolution at the word level, and they are conditioned

n both the image and short-term language structure during

ecoding. Thus, previous words in the caption excluding the

hrase itself, encoded in the long term memory is redundant in its

eneration process. Moreover, the structure of caption across these

hrases is more inter-dependent, and so it requires both the image

https://doi.org/10.1016/j.neucom.2018.12.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.12.026&domain=pdf
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Fig. 1. The overall architecture of phi-LSTM model. It consists of a phrase decoder at the bottom hierarchy and an abbreviated sentence decoder at the upper hierarchy. 
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nd all the previous sequences as a context to generate a correct

escription. 

In this paper, we would like to investigate the capability of a

hrase-based image captioning model that incorporates the ob-

erved structure in its modeling, as compared to a similar model

rained on the flat sequences. To this end, we design a phrase-

ased image captioning model using a hierarchical LSTM architec-

ure, namely phi-LSTM that consists of a phrase decoder and an

bbreviated sentence (AS) decoder to generate image description

rom phrase to sentence. As illustrated in Fig. 1 , given an image

ncoded with the CNN, the phrase decoder is first employed to

ecode the noun phrases (NPs) (i.e. a motorcyclist, the street ) that

escribe the dominant entities within the image, using words as

he atomic unit. At the same time, the phrase decoder also en-

odes each of the NP into a compositional vector representation,

hich will serve as an input to the AS decoder at the upper hi-

rarchy. As such, the NPs will have an equal time step resolution

s to the remaining words at the sentence level (i.e. on ). Then, the

S decoder will decode an abbreviated form of the caption, which

s made up from the last word of each NP (i.e. motorcyclist, street )

nd those remaining words that connect the phrases (i.e. on ). Fi-

ally, a complete image caption (i.e. A motorcyclist on the street ) is

ormed by combining the generated phrases with sentence gradu-

lly, during the beam search at the inference stage. Empirically, our

roposed model shows a better or competitive results on Flickr8k

19] , Flickr30k [20] and MS-COCO [21] datasets in comparison to

he state-of-the art models. 

As a summary, our contributions are two-folds: 

1. We propose a novel phrase-based hierarchical LSTM model

to decode image caption from phrase to sentence. 

2. We show that the image caption generated with phi-LSTM

is more accurate, novel (not seen in the training data), and

richer in word content. 

A preliminary version of this work was presented in [22] ,

hereas the present work adds to the initial version in signifi-

ant ways. First, the phrase selection objective is replaced with the

rediction of the last word of each NP with the AS decoder for

raining simplicity. Secondly, we apply length normalization dur-

ng the inference stage at both of the phrase and sentence levels,

n order to generate a longer caption. Thirdly, we further improve

he outputs of the parsing tool with a phrase refinement strategy.

inally, considerable new analysis and intuitive explanations are

dded to our results. We also extend our experiment to include the

S-COCO dataset [21] , and evaluate our results on four additional
valuation metrics (i.e. METEOR [23] , ROUGE [24] , CIDEr [25] and

PICE [26] ). 

. Related works 

The image description generation approaches are differed in

erms of i) how the context in which the description is derived

rom is represented, and ii) how a sentence is generated. 

.1. Context representation 

To encode visual information, earlier works rely on multiple vi-

ual detectors and classifiers to capture different aspects of an im-

ge, such as objects, attributes, relations and scene [27–33] . The

utputs of these detectors and classifiers usually form a set of

uples [27–31] , in which the description is built upon. Such ap-

roach generally fixes the number of classes for each aspect of the

mage. Since the unprecedented success of CNN in image classi-

cation and object detection tasks, a growing number of works

tart to use different variants of CNN to encode a whole image

3,4,6,7,9,11,15,34–39] , or multiple image regions [5,10,12,13,40–42] .

iven the CNN encoded image and its description, many works

rain a multimodal embedding space using various language mod-

ls [3–7,9,11,15,34,36–40,43] to decode image caption. Alternatively,

ang et al. [41] , Wu et al. [13] , Yao et al. [14] , and You et al.

15] trained a set of “visual word detectors” on the training data

o encode image into a semantic space, named as the attributes. 

Besides that, there are works that rely on retrieval approach to

enerate image description. By retrieving and re-ranking the cap-

ion of similar images from the training sets [34,35,40,44,45] , a

uery image can be described with human written caption that is

ost relevant to its content. However, this method is incapable of

escribing an image with unseen composition of objects correctly.

hus, some of the works in this line of approach retrieve a set of

uples [27] or text snippets [32,33,46] to form and re-rank novel

aptions. On the other hand, Mun et al [47] built an attention map

n the feature of query image using the retrieved caption as guid-

nce to form the context representation. 

.2. Description generation 

Given various contexts described above, several approaches are

eveloped to generate image description, which are i) template-

ased, ii) composition-based, and iii) language model-based. 
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2.2.1. Template-based 

This approach generates sentence using a pre-defined template

with open-slots to be filled with image entities [27,28,30,46] . It is

mostly used by works that represent visual content as a set of tu-

ples. Description generated this way is usually syntactically correct,

but rigid and not flexible. 

2.2.2. Composition method 

This approach stitches up text snippets retrieved [32,33] or en-

tities detected [29,31] to form an image description. It requires

sophisticated pre-defined rules to decide the set of text snippets

or entities to be used for generating a complete caption, their or-

ders and the gluing words in between them. Description generated

in such manner is broader and more expressive compared to the

template-based approach, but is also computationally expensive at

test time due to its nonparametric nature. 

2.2.3. Language model-based 

Most recent works jointly embed image and language into a

multimodal embedding space with neural network based language

model to generate image caption [3–7,36] . For instance, Kiros et al.

[36] proposed a multimodal log-bilinear neural language model

which is biased by image feature to decode image caption. Chen

et al. [48] used RNN to build a dynamic visual representation of

generated words to aid the next word prediction during caption

generation. Mao et al. [3] and Karpathy & Li [5] used RNN to de-

code caption of varying length, while LSTM was implemented in

[4,7,13,38,49] to decode image description from their respective

context. The context for caption generation can be any of those

described in Section 2.1 , or a combination of several types. For ex-

ample, Jia et al. [38] used both CNN encoded image and semantic

embedding learned with normalized Canonical Correlation Analysis

as inputs to their LSTM decoder. Moreover, Xu et al. [9] , Fu et al.

[12] , Li et al. [10] , and Yang et al. [11] incorporated attention mech-

anism with the LSTM decoder to attend to various parts of im-

age during the caption generation process. On the other hand, You

et al. [15] implemented attention mechanism over semantic space

instead of multimodal space when generating image caption. 

2.3. Relation to our work 

Similarly, our model employs the LSTM to decode image caption

using the CNN encoded image as context. However, instead of us-

ing tokenized words as the atomic unit to a pure sequential LSTM,

we introduce a hierarchical LSTM structure to decode image de-

scription from phrase to sentence. Thus, the input of our model at

sentence level is a sequence of combination of words and phrases.

In terms of extending the LSTM from sequential data to

graph-structured data, our model is slightly similar to Graph-

LSTM [50] for semantic object parsing. However, the Graph LSTM

[50] model is used to update information of each graph node based

on their neighboring nodes while keeping the structure of each

graph topology. On the other hand, our model aims to construct

graph-structured data (natural language description) from a num-

ber of unorganized nodes (NPs), where the graph topology is un-

known during inference. 

Also, our work is different from the phrase-based approaches

that use retrieval of text snippets paired with template or compo-

sition method to generate caption [32,33,46] , as we do not rely on

retrieval. Other phrase-based approaches place more emphasis on

phrase learning and use a simple language model to decode sen-

tence. For example, Lebret et al. [37] and Ushiku et al. [39] ex-

tracted various types of phrase from image description. The former

trained phrase relevancy with image with negative sampling, and

decoded a sequence of phrases using a tri-gram language model
onditioned on the chunking tag of each phrase. The latter pro-

osed a subspace-embedding method for phrase learning and gen-

rated sentence from estimated phrases using a combinatorial op-

imization. Our work differs from them in terms of i) the type of

hrase extracted, ii) phrase learning approach, and iii) sentence de-

oding method. 

First, we only extract NPs with intuition of having each phrase

quivalent to an entity within the image. Moreover, we train both

f our phrase and AS decoder using the LSTM, which are linked hi-

rarchically as shown in Fig. 1 . Thus, our phrase representation is

earned from the backpropagation of AS decoder at sentence level.

astly, we generate a complete caption by decoding AS while pro-

ressively replace the inferred noun with generated phrases. 

A recent work, Skeleton-Key [51] designed a course-to-fine im-

ge caption decoder consists of two submodels, where Skel-LSTM

earns to generate skeleton sentence made up of original caption

ith each NP replaced with its last word, while Attr-LSTM learns

o decode the NPs. Their work designed a top-down model, where

 skeleton sentence is first generated, followed by decoding each

f the skeletal word to form the attribute sub-sequences. 

. phi-LSTM architecture 

The main idea of the proposed phi-LSTM is decoding the image

aption from phrase to sentence. It consists of a phrase decoder

nd an abbreviated sentence decoder. Given an image-sentence

air in the training set, NPs that are equivalent to i) the entities

ithin the image and ii) made up of at least two words, are first

hunked from the sentence (S), using a phrase chunking algorithm

escribed in Section 5 . Then, an AS is formed by replacing each of

he NP in the caption with the last word of the chunked phrase as

hown in the example below: 

S: The man in the gray shirt and sandals is pulling

the large tricycle . 

NPs: the man , the gray shirt , the large tricycle 

AS: Man in shirt and sandals is pulling tricycle. 

We decompose each of the caption in the training data into an

S-NPs pair, such that the AS and NPs are processed with two

ecoders that are linked hierarchically. This decomposition alters

he sequence order in the human annotated caption, and thus we

ill have different ground truth sequence (GTS) during the training

tage as compared to the conventional RNN models. To this end,

he GTS of our phrase decoder is the NPs, while the GTS of our AS

ecoder is the AS. 

.1. Phrase decoder 

The phrase decoder in this work has two roles, which are 

i) to decode an image representation into multiple NPs that de-

scribe the entities in the image, and 

ii) to encode each of the NPs into a compositional vector repre-

sentation, which serves as an input to the AS decoder. 

Given an image I , a CNN pre-trained on ImageNet is applied

o encode an image into a D -dimensional image feature, which is

hen transformed into a K -dimensional vector with image embed-

ing matrix, W ip ∈ R 

K×D and bias b ip ∈ R 

K . A LSTM model similar

o [4] is used to decode it into each of the NPs. 

To train an LSTM model to decode the i th NP of length L i , the

mbedded image feature, followed by a start-word token x sp ∈ R 

K 

ndicates the translation process, and each word in the NP are in-

ut to a sequence of LSTM blocks in a step-by-step manner, as

hown in Fig. 2 . Hence, the phrase decoder inputs x i t p at each time
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Fig. 2. The phrase decoder is trained to generate NPs and encode each NP into a 

compositional vector. 
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tep of phrase, t p are: 

 

i 
t p 

= 

{ 

W ip CNN (I) + b ip , for t p = −1 

x sp , for t p = 0 

W ep w 

i 
t p 

, for t p = 1 ...L i , 
(1) 

here W ep ∈ R 

K×V is the trainable word embedding matrix of NPs,

here each word in the vocabulary of size V is represented as a

 -dimensional vector, and w 

i 
t p 

is a one-hot vector indicating the

ocation of current input word in the vocabulary at time step t p of

hrase i . 

For a LSTM block at time step t p , let i t p , f t p , o t p , c t p and h t p de-

ote the input gate, forget gate, output gate, memory cell and hid-

en state at the time step. Thus, the LSTM transition equations

mitting the phrase index i are: 

 t p = σ ( W i x t p + U i h t p −1 + b i ) , (2) 

 t p = σ ( W f x t p + U f h t p −1 + b f ) , (3) 

 t p = σ ( W o x t p + U o h t p −1 + b o ) , (4) 

 t p = tanh ( W u x t p + U u h t p −1 + b u ) , (5) 

 t p = i t p � u t p + f t p � c t p −1 , (6) 

 t p = o t p � tanh (c t p ) , (7) 

 t p +1 = softmax (h t p ) . (8) 

Here, σ denotes the logistic sigmoid function while � denotes

lementwise multiplication. The LSTM parameters { W i , W f , W o ,

 u , U i , U f , U o , U u } are all matrices with dimension of R 

K×K . In-

uitively, each gating unit controls the extent to which informa-

ion is updated, forgotten and forward-propagated while the mem-

ry cell holds the unit internal memory regarding the information

rocessed up to current time step. The hidden state is therefore a

ated, partial view of the memory cell of the unit. 

The output of the LSTM at each time step, p t p +1 ∈ R 

V is equiv-

lent to the conditional probability of a word given the previous

ords and image, P (w t p | w 1: t p −1 , I) . Its ground truth is the input

ord of next time step, and an end-word token at the last time

tep to indicate the end of a NP. The hidden state of the last time

tep is employed as the compositional vector representation of the

P, where 

 i = h L i , z ∈ R 

K . (9)

his is served as the input to the AS decoder described next. 
.2. Abbreviated sentence(AS) decoder 

The AS decoder has a similar design as the phrase decoder, ex-

ept the inputs, outputs and GTS, as shown in Fig. 3 . The input of

he AS decoder is a complete caption describing the image, with

ach NP (e.g. the man ) and the remaining words in the caption

e.g. in ) are encoded as input in a single time step. Let t s denotes

he time step of the AS decoder and N is the length of the caption

onsidering each NP as a unit, the input of AS decoder y t s is: 

 t s = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

W is CNN (I) + b is , for t s = −1 

x ss , for t s = 0 

W es w t s , if input is word 

z i , if input is phrase i 

}
for t s = 1 ...N . 

(10) 

The W is ∈ R 

K×D , b is ∈ R 

K , x ss ∈ R 

K and W es ∈ R 

K×V are another

et of trainable parameters for image embedding, start-word token

nd word embedding matrix of AS, while w t s is the one-hot vector

ndicator of current input word of time step t s . 

Two outputs are produced by the LSTM model at each time step

n the AS decoder, which are i) a binary indicator that determines

f the next input is either a phrase or a word (i.e. phrase indica-

ion), and ii) a softmax prediction of the next word in the sequence

f AS (i.e. word prediction). 

The ground truth of the second output at each time step is ei-

her the last word of next phrase or the next word itself, formu-

ated as: 

T S t s = 

{ 

w t s +1 , if next input is word 

w 

i 
L i 
, if next input is phrase i 

end-word token , when t s = N. 

(11) 

In our preliminary work [22] , we used a phrase token for

he phrase indication, which resulted in a limitation of unable

o discern on the appropriateness of different NP inputs during

ecoding. As a compensation, a phrase selection objective was

ntroduced to solve this limitation. However, it has a complicated

raining procedure, because it is optimized over multiple randomly

elected NPs input at each time step when the input is a NP. To

implify the training process, herein, we replace the phrase token

nd the phrase selection objective with phrase indication and

oftmax prediction of the last word of each NP (i.e. Eq. (11) , if the

ext input is a phrase) respectively. 

.3. Training the phi-LSTM model 

The objective function of our model is a log-likelihood

ost function computed from the perplexity of word prediction

ummed with a loss from the phrase indication prediction. That

s, given an image I and its description S , let R be the number of

hrases of the sentence, while p t p and p t s are the probability out-

ut of LSTM block at time step t p − 1 and t s − 1 respectively. The

erplexity of sentence S conditioned on an image I is 

og 2 P P L (S| I) = − 1 

M 

[ 

N+1 ∑ 

t s =1 

log 2 p t s + 

R ∑ 

i =1 

[ 

L i +1 ∑ 

t p =1 

log 2 p t p 

] ] 

, (12) 

here M = N + 1 + 

∑ R 
i =1 (L i + 1) . 

We use hinge loss as the phrase indication objective to classify

he next input of the AS decoder into either phrase or word. The

ost function of the classifier is 

 PI = 

N ∑ 

t s =1 

κt s σ (1 − y t s h t s W ps ) , (13)

here h t s is the hidden state output of the LSTM block at time

tep t s , W ps ∈ R 

K is trainable parameters for the classifier. y t s is

1 if the next input to the AS decoder is a phrase or -1 other-

ise. Here, κt s normalizes the objective based on the number of
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Fig. 3. Abbreviated sentence decoder: the input sequence is a complete caption, with each NP occupies only one time step, while the ground truth sequence is the abbrevi- 

ated sentence of the caption. It also predicts whether the next input is either a phrase or a word. 
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1 This is confirmed by computing the number of words which are NPs and non- 

NPs using the phrase chunking algorithm described in Section 5.1 on MS-COCO 

dataset. We found out that there are over four millions of words which are NPs 

and over two millions of words which are not. 
phrases and words in the AS. Thus, κt s = 1 /R if y t s = 1 or 1 / (N − R )

otherwise. 

Hence, with P number of training samples, the overall objective

function of our model is: 

C(θ ) = − 1 

Q 

P ∑ 

j=1 

[
M j log 2 P P L (S j | I j ) + C PI 

]
+ λθ · ‖ θ ‖ 

2 
2 , (14)

where Q = P × ∑ P 
j=1 M j . It is equivalent to the average log-

likelihood of a word given their previous context and the image

described, summed with a regularization term, λθ · ‖ θ ‖ 2 
2 
, average

over the number of training samples. Here, θ is all the trainable

parameters of the model. 

In summary, the proposed phi-LSTM architecture is optimized

to predict i) the next word given all the previous words in each NP,

ii) the next word of AS given all the previous words and phrases,

and iii) if the next input is a phrase. This objective function allows

the model to be trained end-to-end. 

4. Image caption generation 

The phi-LSTM model generates image caption in a two-steps

manner, where a list of NP candidates are first generated fol-

lowed by the complete caption, both using beam search algorithm.

The beam size for phrase and sentence generation are b p and b s 
respectively. 

Generation of the NPs in this work is similar to [4] , where a

given image encoded with the CNN followed by a start-word token

are input to the model, acting as the initial context of the phrase

decoder to generate NPs. At every time step, b p words with the

highest probability are sampled and input to the decoder at the

next time step to infer the subsequent words. A set of b p best se-

quences generated up to time step t p are kept as potential candi-

dates for inference of the next word iteratively, until all the candi-

dates infer an end-word token. A score is then computed for each

of the NP candidate by summing up the log probability of each

word normalized by the length of NP, including the end-word to-

ken: 

S p = 

1 

L + 1 

[ 

L +1 ∑ 

t p =1 

log 2 p t p 

] 

, (15)

The generated NP candidates are then grouped according to

their last word, and the candidates with score lower than the

threshold value T will be discarded. This is in order to improve
he quality of the image description formed. Nonetheless, at least

ne candidate (of the highest score) will be remained for each NP

roup regardless of its score. Following this, a total of b s complete

aptions will be generated from the list of NP candidates, as illus-

rated in Fig. 4 . The AS decoder produces two outputs at each time

tep, which are i) the next word prediction and ii) the phrase in-

ication of next input. Thus, when the model infers that the next

nput is a phrase, each of the b s word candidates inferred (e.g. dogs,

og, a, two, brown in Fig. 4 ) is compared with the list of NP candi-

ates. Those NPs with the last word matches to the inferred words

e.g. a brown dog, two dogs, two brown dogs ) are attached to the

ist of beam candidates at the current time step, replacing the in-

erred words (e.g. beam that infers ‘ dog ’ will use NP ‘ a brown dog ’

s next input instead). The inferred words without any NP alterna-

ive (e.g. a, two, brown ) will remain in the list of beam candidates,

or case where the phrase decoder does not generate an appropri-

te NP (e.g. single word noun or very small object). Once all candi-

ate sentences infer an end-word token, the score of each caption

s computed as: 

 s = − log 2 P P L (S| I) , (16)

nd the sentence obtains the highest score, S s is chosen. 

. Phrase chunking, limitations and refinement 

Phrase chunking is a natural language process that separates

nd segments a sentence into its subconstituents, such as noun,

erb, and prepositional phrases. A quick overview on the structure

f image descriptions reveals that the key elements which com-

ose the majority of the captions are usually those NPs that de-

cribe the dominant entities in an image. It can be either an object,

roup of objects or scene. These entities have equivalent abstract

evel as the output of a CNN encoder, and are linked with verb

nd prepositional phrase. Thus, NP essentially covers over half of

he corpus in a language model trained to generate image descrip-

ion. 1 Therefore, in this paper, we partition the learning of the NP

nd sentence structure so that they can be processed more evenly,

ompared to extract all the phrases without considering their part

f speech (POS) tag. 
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Fig. 4. Example of image caption generation given a set of generated NPs ( b s = b p = 5 , T = −0 . 9 in this example). Best viewed in color. 
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Fig. 5. An example of phrase chunking from the dependency parse. 
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2 Both parsers used throughout this work are in the package of Standford 

CoreNLP version 3.6.0. The type of dependency parser applied is collapsed- 

ccprocessed-dependencies. 
This section describes i) the parsing algorithm we applied to

btain the AS-NPs pair, ii) problems arose from the limitation of

urrent parsing tool and our proposed solution, and iii) a mea-

ure we embark to reduce the influence of these limitations on the

raining of our image captioning model. 

.1. Phrase chunking 

To identify NPs from a training caption, we adopt the depen-

ency parse of Stanford CoreNLP tool [52] , which forms a struc-

ural relation tree over a sentence by providing structural relation-

hips between words. Though it does not chunk sentence directly

s to the constituency parser and other chunking tools, the ex-

racted pattern of the NP is more flexible as we can select the de-

irable structural relations. The relations we had selected are: 

• determiner relation ( det ), 
• numeric modifier ( nummod ), 
• adjectival modifier ( amod ), 
• compound ( compound ), 
• adverbial modifier ( advmod ), only selected when the meaning

of adjective term is modified, e.g. “dimly lit room ”, 
• nominal modifier for ‘of’ & possessive alteration ( nmod:of &

nmod:poss ), with case ‘of’ included. 

In general, the dependency parser extracts several triplets, each

ade up of a governor word, a dependent word and a relation

hat links them, in the form of 〈 relation (governor, dependent) 〉 ,
rom a sentence. In order to form phrase chunks with the depen-

ency parser, a simple post-processing step as illustrated in Fig. 5

s carried out. That is, triplets with the same governor or depen-

ent word which are also consecutive in the complete caption (e.g.

mod(shirt, gray) and det(shirt, the) ) are grouped together as a sin-

le NP. The same applies for the consecutive triplet (e.g. det(man,

he) ), while the standalone word (e.g. ‘in’) remains as a unit in the

S. 

.2. Limitation of parsing tool 

Due to the substantial ambiguity in linguistic structure, the

arsing of natural language data is still an ongoing research with
o perfect solution. As a result, there are always some unavoid-

ble errors from the parser output, regardless of the chunking tool

sed. Asides from the dependency parser, we have tested phrase

hunking with a constituency parser. The constituency parser out-

uts subject and predicate of a sentence directly, and we chunk

he NP constituents at the lowest level. In this section, we will

ompare the AS-NPs pair formed by chunking using both of the

arsers 2 . The NPs are showed in the left column while the AS is

howed in the right column. The examples (a1-d1) given below are

abelled with S, DP, CP , and DP(R) , which represent complete sen-

ence, AS-NPs pair formed by chunking with dependency parser,

onstituency parser, and dependency parser with further refine-

ent respectively. An underlined text indicates that the AS-NPs

air contains error. 

One of the common errors found in the output of any of the

arsers is incorrect recognition of a verb as a noun. As a result, AS

ith missing object is formed, as shown in the examples (a1 - d1,

ight column). Moreover, there are NPs that do not describe any

ntity in an image, such as ‘ the one ’ in example (c1). 
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(a1) S : A man in a blue shirt standing in a garden. 

DP & CP : a man, a blue shirt standing , 

a garden 

Man in standing in garden. 

(b1) S : A group of young people preparing to go skiing. 

DP : a group of young people 

preparing 

Preparing to go skiing. 

CP : a group, young people 

preparing 

Group of preparing to go 

skiing. 

(c1) S : Two men look toward the camera, while the one in front 

points his index finger. 

DP & CP : two men, the camera, the 

one, front points , his index 

finger 

Men look toward camera, 

while one in points 

finger. 

(d1) S : Two men and a woman on chairs outside near water. 

DP & CP : two men, a woman, near 

water 

Men and woman on chairs 

outside water . 

From our observation, both parsers seem to give relatively sim-

ilar NP outputs. The reasons that we chose the dependency parser

over the constituency parser are: 

1. to chunk NPs with higher constituent level, it is more intu-

itive to select specific dependency relation such as ‘ nmod:of ’,

than specify the level of constituent NP in its parse tree. 

2. there are some cases where a past tense verb is a part of

the attributes of a noun, and the dependency parser has a

higher chance to recognize it as adjective. For example: 

(a2) S : Two snow covered benches sit in a snow covered field. 

DP : two snow, a snow covered field Snow covered benches sit in field. 

CP : two snow, a snow Snow covered benches sit in snow 

covered field. 

(b2) S : A red truck speeds down a tree lined street. 

DP : a red truck, a tree lined street Truck speeds down street. 

CP : a red truck, a tree Truck speeds down tree lined 

street. 

In order to parse NPs at a higher constituent level, we include

the nominal modifier for ‘of’ and possessive alteration ( nmod:poss

& nmod:of ) among our selected dependency relations. Most of the

NPs chunked under these relations correspond to an entity or a

group of entities within an image as we intended, as shown in

example (a3). Nonetheless, there are still ambiguity for the NPs

chunked from nmod:of relation, on either the whole phrase should

be splitted into two NPs or remained as a single NP. Example (b3)

shows the case where an ‘ of ’ relation is not necessary, while exam-

ple (c3) shows another case when the necessity of the relation is

ambiguous. 

(a3) S : A bird washes itself in a body of water. 

DP : a bird, a body of water Bird washes itself in water. 

CP : a bird, a body Bird washes itself in body of 

water. 

(b3) S : A lunch box is full of a variety of foods. 

DP : a lunch box, full of a variety of 

foods 

Box is foods. 

CP : a lunch box, a variety of foods Box is full of foods. 

(c3) S : A group of men and women walk down the center of a 

tree-lined street. 

DP : a group of men and women, the 

center of a tree-lined street 

Women walk down street. 

CP : a group, the center, a tree-lined 

street 

Group of men and women 

walk down center of street. 

5.3. Refinement of NPs 

The limitations of parser have created unnecessary variations

across the training data, which in turn has affected the training

effectiveness of our image captioning model. In order to reduce

the effects of the incorrect parsing on our model, we introduce a

refinement strategy between the training of our phrase decoder

and the AS decoder, where it will update the AS-NPs pair based on

the local statistic of the training data. That is, the phrase decoder

is first trained before the overall model with early stopping tech-

nique applied on the perplexity value of all NPs. Then, the model
ith the best validation set performance is used to generate a set

f NPs from each of the training image. Next, the components of

he AS-NPs pair of the training captions will be modified based

n the generated NPs, by gradually restoring the non-inferred

rst word into its AS, followed by the non-inferred last word.

he details of our proposed refinement algorithm are shown in

ig. 6 , together with an example for better understanding. Given

n image in the training data, a total of b p NPs are generated. G s 

nd G e are the set of first words and last words of all b p generated

Ps respectively, while K is a chunked NP (from parser) starts

ith word W s and end with word W e , with a length of | K | words.

his refinement is carried out for all of the chunked NPs in a

entence. 

The examples below show the difference between the AS-NPs

air formed from our proposed phrase chunking approach de-

cribed earlier, before and after the refinement strategy. Example

a4) shows where the RS1 comes into play, as none of the gener-

ted NPs start with word ‘ full ’ but some start with word ‘ a ’. Ex-

mple (b4) is corrected with RS2, as the word ‘ standing ’ is not

nferred as the last word of any of the generated NPs. In exam-

le (c4), phrases the one, front points and his index finger are re-

tored to its AS, because our phrase decoder which uses image

lone as its context will not generate NPs end with word ‘ one ’,

 points ’ and ‘ finger ’. These three phrases do not correspond to any

ominant entities within the image, and thus it will seldom oc-

ur among the captions of similar images. In fact, ‘ the one ’ can-

ot be generated from the image content alone, as it needs its

ubject (‘ two men ’) as the previous context. On the other hand,

he word ‘ camera ’ is inferred even though the object is not vis-

ble in the image due to the statistic of training data, as there

re a lot of captions end with ’ looking at the camera ’ for im-

ges showing the frontal view of human. Example (d4) shows

he case where our trained phrase decoder automatically decides

hich entity to be kept based on the statistic of the training

ata. 

(a4) S : A lunch box is full of a variety of foods. 

DP : a lunch box, full of a variety of 

foods 

Box is foods. 

DP(R) : 

a lunch box, a variety of foods Box is full of foods. 

(b4) S : A man in a blue shirt standing in a garden. 

DP : a man, a blue shirt standing, a 

garden 

Man in standing in garden. 

DP(R) : 

a man, a blue shirt, a garden Man in shirt standing in 

garden. 

(c4) S : Two men look toward the camera, while the one in front points 

his index finger. 

DP : two men, the camera, the one, 

front points, his index finger 

Men look toward camera, while 

one in points finger. 

DP(R) : 

two men, the camera Men look toward camera, while 

the one in front points his 

index finger. 

(d4) S : A group of men and women walk down the center of a 

tree-lined street. 

DP : a group of men and women, the 

center of a tree-lined street 

Women walk down street. 

DP(R) : 

a group of men, the center of a 

tree-lined street 

Men and women walk down 

street. 

With this refinement strategy, the AS decoder will be trained

ully on the refined AS, while the phrase decoder is fine-tuned

n the refined NPs when the overall model is trained. On top

f reducing the influence of error caused by the parser, we cus-

omize the AS-NPs pairs such that they are more appropriate for

he image captioning task instead of linguistic task. Moreover,

ess dominant objects that need more informative prior context

long term memory) for its generation, such as finger in exam-

le (c4) will be learned by the AS decoder with the refinement

pplied. 
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Fig. 6. NP refinement strategy. 
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. Experiment 

.1. Datasets 

The proposed phi-LSTM model is tested on three benchmark

atasets - Flickr8k [19] , Flickr30k [20] , and MS-COCO [21] . These

atasets consist of 80 0 0, 310 0 0 and 123,287 images respectively,

ach annotated with at least five image descriptions prepared

y human from crowd sourcing. We follow the publicly available

ataset splits 3 used in [5] . That is, the validation and testing set

ach contains 10 0 0 images for Flickr8k & Flickr30k datasets, and

0 0 0 images for MS-COCO dataset. The rest of the images are used

or training. 

.2. Evaluation metrics 

We employ five automatic metrics, including BiLingual Evalua-

ion Understudy (BLEU) [53] , Recall-Oriented Understudy for Gist-

ng Evaluation (ROUGE) [24] , Metric for Evaluation of Translation

ith Explicit ORdering (METEOR) [23] , Consensus-based Image De-

cription Evaluation (CIDEr) [25] and Semantic Propositional Im-

ge Caption Evaluation (SPICE) [26] to evaluate the quality of the

enerated image captions. BLEU metric measures the precision of

 -grams matching between a generated caption and all reference

entences, while ROUGE metric measures the recall instead of pre-

ision. Here, we only reported ROUGE-L which uses the longest

ommon sequence instead of n-grams. METEOR aligns generated

aption and reference string by mapping each unigram using three

ifferent modules, which are “exact”, “porter stem” and “Word-

et synonymy” modules. The final score is the F-mean computed

rom the number of unigram mapping. CIDEr metric combines

he average cosine similarity of each n -gram between the gener-

ted caption and references. It gives lower weight to n -grams that
3 http://cs.stanford.edu/people/karpathy/deepimagesent/ . 

t  

e  

a  
ommonly occur across all reference captions in the dataset. Lastly,

PICE metric parses image caption and its references into a scene

raph to form tuples for each semantic proposition. Then, it com-

utes the F-score defined over the conjunction of all logical tuples.

.3. Experimental details 

Aside from our proposed phi-LSTM model, we have conducted

xperiment on a baseline model which processes image caption as

 sequence of words. It is basically a reimplementation of work de-

cribed in [4] , but without ensemble multiple trained models and

sing VGGnet [54] instead of GoogleLeNet [55] to encode image for

 fair comparison with our model. All experimental settings in the

aseline model and ours are the same unless stated otherwise. 

During the training stage, we use raw caption without any pre-

rocessing as input to the language parser in order to get a more

ppropriate AS-NPs pair. Then, all the words in the AS-NPs pair

re converted to lower case, with punctuations removed, and word

hat occurs less than 5 times in the training data discarded, so that

he tokenization of our image captions are consistent with that of

5] . To avoid gradient explosion due to overlength caption (relative

o average length of all training data), we truncate the sentence as

pecified in Table 1 . For the overlength NPs, we truncate the first

ew words instead of last few words, because the latter part of NPs

sually holds more significant semantic content. The length of the

S-NPs pair considered are those after the refinement described in

ection 5.3 . The truncate length is decided such that the number

f captions affected are less than 0.5% of the whole training data. 

The CNN encoder used in this paper is the VGG-16 [54] pre-

rained on ImageNet, but without fine-tuning the CNN parameters,

or a fair comparison with the preliminary version of this work

22] . We also include the quantitative results obtained by using

he pool5 feature of ResNet-152 [56] as the image encoder for ref-

rences. The LSTM decoder with hidden size of K = 256 (Flickr8k)

nd K = 512 (Flickr30k & MS-COCO) is employed. Our model is

http://cs.stanford.edu/people/karpathy/deepimagesent/
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Fig. 7. Effect of the AS decoder’s beam size, b s on different metrics in MS-COCO dataset, using ResNet-152 as the image encoder. b s = 20 is the optimum value according to 

the findings. 

Table 1 

Caption truncation setting. 

Dataset Model Truncate Captions 

length affected (%) 

Flickr8k Baseline 24 0.25 

phi-LSTM (AS) 20 0.24 

phi-LSTM (NP) 7 0.12 

Flickr30k Baseline 36 0.25 

phi-LSTM (AS) 30 0.29 

phi-LSTM (NP) 7 0.12 

MS-COCO Baseline 23 0.26 

phi-LSTM (AS) 18 0.35 

phi-LSTM (NP) 7 0.36 
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4 The score reported here is cited from [9] , in which the authors claimed 

that they obtained the missing metrics from authors of [4] through personnel 

communications. 
optimized with RMSprop, using a minibatch of 300(Flickr8k),

50 0(Flickr30k) and 70 0(MS-COCO) image-sentence pair per itera-

tion. The learning rate is set to 0.001, and dropout regularization is

employed to avoid overfitting. 

During the testing stage, we found that our proposed model

generates better caption with large beam size, as shown in Fig. 7 ,

while the baseline model’s performance drops when large beam

size is used. According to Vinyals et al., a well trained model

should yield better result with larger beam size, and getting best

performance with a relatively small beam size is an indication of

model overfitting [57] . Nevertheless, we compare our model us-

ing beam size of b p = 30 and b s = 20, with the baseline model tested

with beam size of b = 3 and b = 20. 

Our model generates caption in a two-stage manner, from NP

to complete caption as described in Section 4 . We show some ex-

amples of the generated NPs in Fig. 8 . To choose an appropriate

value of threshold T , we examine the changes of several metrics

and sentence uniqueness on the generated captions using a varying

value in each dataset. The test result of MS-COCO dataset is shown

in Fig. 9 . It is observed that all the n -grams metrics (BLEU, CIDEr,

METEOR and ROUGE-L) gradually increase with the threshold, and
each an optimum at T = -1.6 for Flickr8k and Flickr30k datasets,

nd T = -1.5 for MS-COCO dataset. Further increment of T yields dif-

erent effect on different n -grams metrics, where BLEU and CIDEr

ecrease while METEOR and ROUGE-L fluctuate irregularly. Besides

hat, the sentence uniqueness constantly reduces with the incre-

ent of T as a result of less choice of NP candidates. We also no-

ice that there are not much changes in the SPICE metric, where

he score fluctuates within the range of 0.163–0.165 across vary-

ng value of T . This shows that the threshold value T only affects

ords’ order and does not help much in predicting the correct ob-

ects, attributes and relations. 

.4. Comparison with state-of-the-art models 

Tables 2 , 3 , 4 show the performance of our model in comparison

ith the state-of-the-art models, while Table 5 reports the perfor-

ance of our model compared with the baseline model evaluated

ith MS-COCO online test server. B- n , MT, RG, CD and SP stands

or n -gram BLEU, METEOR, ROUGE-L, CIDEr and SPICE respectively.

 indicates that the results is obtained by ensembling multiple

rained models, while (w.r) and (w.o.r) refer to with and without

hrase refinement respectively. (RN) is our complete model trained

ith ResNet-152 as image encoder. Refer to 4 for � . 

When compared with the methods that only use the CNN as

ncoder, our model performs better or comparable to all other

tate-of-the-art models, including the phrase-based models pro-

osed by Lebret et al. [37] and Ushiku et al. [39] . Note that

ur current model has a lower BLEU-1 and BLEU-2 score but a

igher BLEU-3 and BLEU-4 score compared to our preliminary re-

ults published in [22] . This is because lower order of the BLEU
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Table 2 

Performance of phi-LSTM and other state-of-the-art methods on Flickr8k dataset. 

Models B–1 B–2 B–3 B–4 MT RG CD SP 

DeepVS [5] 57.9 38.3 24.5 16.0 16.7 – 0.318 –

NIC [4] † � 63.- 41.- 27.- – – – – –

Baseline, b = 3 57.6 39.2 26.1 17.5 19.1 43.6 0.422 0.128 

Baseline, b = 20 56.2 38.0 25.3 16.7 19.0 43.2 0.410 0.129 

phi-LSTM [22] 63.6 43.6 27.6 16.6 – – – –

phi-LSTM (w.o.r) 61.5 43.1 29.6 19.7 19.9 44.5 0.502 0.140 

phi-LSTM (w.r) 62.7 44.4 30.7 20.8 20.2 45.4 0.516 0.141 

phi-LSTM (RN) 65.2 46.7 32.8 22.5 20.8 47.1 0.567 0.146 

With attention mechanism 

Soft-Atten [9] 67.0 44.8 29.9 19.5 18.9 – – –

Hard-Atten [9] 67.0 45.7 31.4 21.3 20.3 – – –

With extra information / extra information + attention mechanism 

g-LSTM [38] 64.7 45.9 31.8 21.6 20.2 – – –

ACVT [13] 74.- 54.- 38.- 27.- – – – –

Reg-Atten [12] † 63.9 45.9 31.9 21.7 20.4 47.0 0.538 –

Table 3 

Performance of phi-LSTM and other state-of-the-art methods on Flickr30k dataset. 

Models B-1 B-2 B-3 B-4 MT RG CD SP 

mRNN [3] 60.- 41.- 28.- 19.- – – – –

DeepVS [5] 57.3 36.9 24.0 15.7 15.3 – 0.247 –

LRCNN [7] 58.7 39.1 25.1 16.5 – – – –

NIC [4] † � 66.3 42.3 27.7 18.3 – – – –

PbIC [37] 59.- 35.- 20.- 12.- - - - - 

Baseline, b = 3 57.0 38.5 25.9 17.3 17.3 41.2 0.333 0.117 

Baseline, b = 20 57.0 38.3 25.7 17.3 17.8 41.7 0.349 0.122 

phi-LSTM [22] 66.6 45.8 28.2 17.0 – – – –

phi-LSTM (w.o.r) 60.6 41.2 27.8 18.6 18.1 41.8 0.394 0.123 

phi-LSTM (w.r) 61.5 42.1 28.6 19.3 18.2 42.4 0.399 0.125 

phi-LSTM (RN) 64.2 45.4 31.7 21.8 19.0 44.6 0.452 0.134 

With attention mechanism 

Soft-Atten [9] 66.7 43.4 28.8 19.1 18.5 – – –

Hard-Atten [9] 66.9 43.9 29.6 19.9 18.5 – – –

With extra information / extra information + attention mechanism 

g-LSTM [38] 64.6 44.6 30.5 20.6 17.9 – – –

ACVT [13] 73.- 55.- 40.- 28.- – – – –

Reg-Atten [12] † 64.9 46.2 32.4 22.4 19.4 45.1 0.472 –

Sem-Atten [15] † 64.7 46.0 32.4 23.0 18.9 – – –

Table 4 

Performance of phi-LSTM and other state-of-the-art methods on MS-COCO dataset. 

Models B-1 B-2 B-3 B-4 MT RG CD SP 

mRNN [3] 67.- 48.- 35.- 25.- – – – –

DeepVS [5] 62.5 45.0 32.1 23.0 19.5 – 0.660 –

LRCNN [7] 66.9 48.9 34.9 24.9 – – – –

NIC [4] † � 66.6 46.1 32.9 24.6 – – – –

PbIC [37] 70.- 46.- 30.- 20.- – – – –

CoSMos [39] 65.- 49.- 32.- 20.- 20.- – – –

Baseline, b = 3 65.2 47.5 34.3 25.2 22.6 49.3 0.779 0.154 

Baseline, b = 20 61.7 43.7 31.4 23.1 22.4 47.7 0.724 0.150 

phi-LSTM (w.o.r) 66.0 48.2 34.7 25.0 23.0 49.4 0.812 0.165 

phi-LSTM (w.r) 66.6 48.9 35.5 25.8 23.1 49.7 0.821 0.165 

phi-LSTM (RN) 69.5 52.3 38.5 28.2 24.3 51.7 0.905 0.175 

With attention mechanism 

Soft-Atten [9] 70.7 49.2 34.4 24.3 23.9 – – –

Hard-Atten [9] 71.8 50.4 35.7 25.0 23.0 – – –

Review [11] – – 29.- 23.7 – 0.88 – –

Skel-Key [51] 74.2 57.7 44.0 33.6 26.8 55.2 1.073 0.196 

With extra information / extra information + attention mechanism 

g-LSTM [38] 67.0 49.1 35.8 26.4 22.7 – 0.813 –

ACVT [13] 74.- 56.- 42.- 31.- 26.- – 0.94- –

Reg-Atten [12] † 72.4 55.5 41.8 31.3 24.8 53.2 0.955 –

Sem-Atten [15] † 70.9 53.7 40.2 30.4 24.3 – – –
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Fig. 8. Examples of NPs generated from image. Red fonts indicate that the NP’s score S p is lower than threshold T . Complete caption generated from the NP candidates are 

shown at the bottom of each image. 

Fig. 9. Effect of threshold T on five different metrics and number of unique captions generated in MS-COCO dataset. 

Table 5 

Performance of phi-LSTM and baseline model, both using ResNet-152 as image encoder, evaluated on MS-COCO online test server. 

Models B-1 B-2 B-3 B-4 MT RG CD 

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 

Baseline 66.6 85.4 49.0 74.3 35.6 62.1 26.1 50.8 23.7 31.9 50.3 64.4 0.818 0.826 

phi-LSTM 69.3 87.8 51.9 77.8 37.9 65.8 27.6 53.8 24.1 32.4 51.2 65.6 0.875 0.896 
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metrics is bias towards short sentence [38] , 5 but we have added

length normalization in our beam search algorithm ( Eqs. (15 ) and

( 16 )) to generate longer caption. As a result, we are able to increase

the average length of generated caption by approximately three

words, e.g. from 6.8 words (as reported in Table 2 of [22] ) to 9.72

words for Flickr8k dataset. Longer caption is desired for a better

comparison with other models. Tables 2–4 also show the effective-

ness of the NP refinement algorithm, as there is approximately 1

BLEU score improvement in all the three datasets when the refine-

ment strategy is employed. Although we have reported the results

obtained with ResNet-152 as image encoder for future reference,

the VGG-16 results are still a fairer comparison with most of the

works in the table. 

Since the objective of our work is to investigate the capa-

bility of a phrase-based image captioning model, compared to a

similar model trained on flat sequences, we do not implement
5 This happens when the brevity penalty (BP) of BLEU is set to 1 (i.e. with- 

out BP), which is the default setting of publicly available code for evaluation 

in https://github.com/karpathy/neuraltalk and https://github.com/tylin/coco-caption. 

Since the BP value is seldom reported, we assume that this is the setting others 

used. 

a  

k  

q  

d  

e  

e  

f  
ttention mechanism or provide extra information to our model,

s it is beyond the scope of this paper. Nevertheless, we argue that

ur model is comparable to the soft-attention model [9] , which re-

uires extra computation of relative importance of each location in

eature maps at every time step. 

. Analysis of phi-LSTM model in comparison to its sequence 

odel counterpart 

.1. SPICE metric evaluation 

From the evaluation of SPICE metrics shown in Table 6 , we ob-

erve that there are improvements in all the sub-metrics when im-

ge caption is decoded in the phrase-based hierarchical manner.

ost of the improvements gained are at the object level (object,

ttribute, size and color). This is because we have essentially bro-

en down the generation process of subsequences from global se-

uence with our proposed model. Therefore, the phrase decoder

oes not need to shift the time-scale of generative process repeat-

dly, and can focuses on a particular aspect of image when gen-

rating the NPs similar to the attention mechanism [9] . The dif-

erence is that the model with attention mechanism decodes a
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Table 6 

Performance of phi-LSTM (w.r.) and baseline model evaluated with SPICE measurements on MS-COCO dataset, with 

beam size = 20. 

Models SPICE Precision Recall Object Relation Attribute Size Color Cardinality 

Baseline 0.150 0.386 0.095 0.284 0.033 0.064 0.023 0.070 0.0 0 0 

phi-LSTM (w.r.) 0.165 0.449 0.104 0.310 0.038 0.076 0.036 0.100 0.002 

Table 7 

Measure of caption uniqueness and novelty. A higher ‘seen’ percentage in- 

dicates that the generated captions are less novel. The number of unique 

words of all captions is shown under ‘Words’, where ‘Within vocab.’ con- 

siders only words that are in the training corpus. 

Models Sentence Words 

Unique Seen Avg. Actual Within 

length vocab. 

Flickr8k 

References 99.84% 1.20% 10.87 3147 1919 

Baseline ( b = 3) 58.70% 10.80% 11.06 – 196 

Baseline ( b = 20) 54.40% 12.20% 11.54 – 201 

phi-LSTM (w.r.) 67.70% 7.40% 9.72 – 212 

Flickr30k 

References 99.96% 0.30% 12.39 4204 3561 

Baseline ( b = 3) 65.70% 10.70% 12.40 – 348 

Baseline ( b = 20) 58.90% 9.40% 12.81 – 328 

phi-LSTM (w.r.) 77.20% 9.30% 11.07 – 375 

MS-COCO 

References 99.22% 5.56% 10.44 7241 5949 

Baseline ( b = 3) 38.06% 63.54% 10.12 – 517 

Baseline ( b = 20) 24.54% 77.32% 10.60 – 457 

phi-LSTM (w.r.) 46.42% 48.54% 9.81 – 548 
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equence that spreads out over multiple time-scales while ours

xes the time-scale of subsequence decoder at the object level.

onetheless, it has a global sequence of mixed time-scales, as non-

bject phrases are decoded in multiple time steps at the sentence

evel. There are only small improvement in terms of relations and

ardinality, because the CNN encoder we used does not hold any

nformation regarding the relative position of the objects. There-

ore, object relations are mostly inferred from the local statistic

f training data (e.g. image with human and bicycle always has

rides’ relation inferred because this relation occurs most in train-

ng data). On the other hand, cardinality which measure the cor-

ectness in terms of object counting has the lowest score because

he CNN encoder applied is never trained for object counting. 

.2. Evaluation on uniqueness and novelty of caption 

It has been pointed out that multimodal RNN-based approach

ends to reconstruct previously seen caption [35] . Hence, we com-

are our model with baseline in terms of the uniqueness (ratio of

on-repeated generated caption in the test set) and novelty (ra-

io of generated sentence that is different from the training cap-

ions), similar to [35] . We compute and tabulate i) the percentage

f unique captions generated, ii) the percentage of generated cap-

ions that are seen in the training data, iii) the average length of

he captions, and iv) the number of unique words generated in

able 7 . To obtain an upper bound of performance under these

easures, we evaluate the five human annotated captions of the

ame set of test images as reference. 

From Table 7 , we observe that our model can generate more

nique and novel (not seen in training data) captions, when com-

ared with the baseline in all three datasets. Although the average

ength of our captions is shorter than the baseline, it is only about

ne word less when compared with the human annotated cap-

ions. In our experiment, the vocabulary size of Flickr8k, Flickr30k
nd MS-COCO datasets are 2538, 7413 and 9996 words, respec-

ively. Therefore, there are a total of 1228, 643 and 1292 out-of-

ocabulary words in the test set of the three datasets respectively,

hich would penalize all the automatic metrics we used. Assume

hat all within-vocabulary words in the reference captions are the

pper bound of test image relevant words a well-trained image

aptioning model can infer, we observe that both our model and

aseline can only generate captions that made up of around 10% of

ll possible words. Nevertheless, the number of unique words gen-

rated using our model is still higher than the baseline which has

 longer average caption length. 

We deduce that the uniqueness and novelty of caption gener-

ted with our model is gained from the changes of probability dis-

ribution of words during inference with the AS decoder. In the

aseline model, there are a lot of times where the model obtains

igh probability score from predicting the determiner word such as

 a ’ and ‘ the ’, especially during the first word prediction. Due to the

umulative nature of probability score when using the beam search

lgorithm, such prediction tends to remain as high-rank beam can-

idate, compared to prediction of other words. Therefore, the base-

ine model tends to generate caption starts with word ‘ a ’. On the

ther hand, our model decodes the NPs separately, and thus the

S seldom contains determiner words. This boosted the probability

f other words to be inferred and remain in high-rank among all

eam candidates during the inference with AS decoder. As a result,

ur model get less influence from the determiner words and this

mproves the uniqueness and novelty of our generated captions. 

.3. Model limitations observed with qualitative analysis 

To gain further insights on how the number of occurrence of

ach word in the training corpus affects the word prediction when

enerating caption, we record the top five, least seen words that

re inferred by both models in Table 8 . Then, we examine manu-

lly the captions that contain those words, and highlight the words

hat are used correctly in describing their respective image. The

mage-caption pair of some correctly inferred least seen words are

hown in Fig. 10 as examples. From Table 8 , we can see that our

hrase-based model is generally able to infer correctly more words

hich are less seen, compared to the baseline. The only excep-

ion is in Flickr8k dataset, where the baseline manage to infer cor-

ectly the word ‘ snowboarding ’ which is seen for only 44 times. The

orresponding caption is shown in the first image in Fig. 10 , and

e found that our model has inferred ‘ snowboarder ’ for that im-

ge, which naturally makes the generation of action ‘ snowboarding ’

edundant. 

Furthermore, we record the top five, most seen words which are

bsent in the generated captions of our model and the baseline in

able 9 . From the table, we observe that the words in which our

odel is able to infer while the baseline cannot are: ‘ an ’ (Flickr8k

 Flickr30k), ‘ green ’ (Flickr8k), ‘ one ’ (Flickr30k), ‘ there ’ and ‘ three ’

MS-COCO). In the case of word ‘ an ’, it is because the test set of

lickr dataset contains more attributes starting with vowels com-

ared to objects, such as ‘ an orange shirt ’ and ‘ an outdoor market ’

s shown in Fig. 11 . Such sequence usually has a low score until

he object word is predicted (i.e. the sequence score of ‘ an outdoor ’

s much lower than ‘ a market ’ before the third word ‘ market ’ is pre-

icted). Due to the re-rank and drop out procedure of beam search
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Fig. 10. Examples of caption generated in Flickr8k (1st row), Flickr30k (2nd row) and MS-COCO (3rd row) datasets. The least seen words that are used correctly in the 

description are in green. More qualitative results are provided in the supplementary materials. 

Fig. 11. Examples of the caption generated from different images. The most seen words that are inferred by our model, but not the baseline, are in green. 
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Table 8 

Top-5 least seen words that are inferred in the generated captions. Those highlighted words means they have been inferred correctly in 

describing the image content. 

Flickr8k Flickr30k MS-COCO 

phi-LSTM Baseline phi-LSTM Baseline phi-LSTM Baseline 

Words Seen Words Seen Words Seen Words Seen Words Seen Words Seen 

bubble 34 stage 39 tackled 48 tablecloth 40 clearly 70 headboard 117 

kayak 54 log 42 cows 49 tackled 48 unripe 94 drivers 183 

driving 55 snowboarding 44 chalkboard 52 dune 82 printer 123 racquets 184 

tent 57 hind 44 tackle 86 formations 82 hangar 134 backs 219 

book 61 kayak 54 handstand 91 fruits 88 towering 176 herself 237 

Table 9 

Top-5 most seen words that are not inferred in the generated captions. 

Flickr8k Flickr30k MS-COCO 

phi-LSTM Baseline Oursphi-LSTM Baseline Oursphi-LSTM Baseline 

Words Seen Words Seen Words Seen Words Seen Words Seen Words Seen 

while 1443 an 1807 up 4762 an 14,590 by 16,378 by 16,378 

child 1120 while 1443 as 4598 one 5890 several 9082 there 12,109 

three 1052 child 1120 outside 4273 as 4598 sits 8847 three 10,612 

one 876 three 1052 from 3721 outside 4273 area 8377 several 9082 

her 861 green 931 their 3702 their 3702 one 8335 sits 8847 
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t every time step, sequence with lower score at earlier time step

ends to drop out easily, especially those with longer previous se-

uence. Thus, generating caption in a phrase-based manner avoid

uch problem, because the sequence score of short phrase gets

ess influence from previous words during beam search. As for the

ord ‘ there ’, it can be inferred by our model because we split the

ecoding of AS and NPs separately, which naturally makes the pre-

iction of word ‘ a ’ the job of phrase decoder. Without the word

 a ’ as competitor, the word ‘ there ’ is more likely to be predicted

s first word in a caption. The same applies for word ‘ three ’ with

ord ‘ two ’ as competitor. These are the reasons that our model

s capable of generating more unique captions compared to the

aseline. 

On the other hand, the baseline model has a better chance to

redict particle word ‘ up ’ and conjunction ‘ from ’ with influence

rom longer previous words. Other words which cannot be inferred

y both models usually have alternative words that have higher

core. For example, ‘ boy/girl ’ and ‘ next to ’ are better alternative

o ‘ child ’ and ‘ by ’. Moreover, both models are incapable of infer-

ing conjunction ‘ while ’ and ‘ as ’, which are mostly used to describe

ultiple actions performed by the same or different individuals in

n image. 

. Conclusion 

This paper presented a phrase-based L STM (phi-L STM) model

o generate image caption in a hierarchical manner, where NPs

hat describe the salient objects in an image are first generated,

efore a complete caption is formed from the NPs. Each gener-

ted NP is encoded as a compositional vector, which acts as the

nput of one time step at the sentence level. Such design allows

Ps to be decoded in a consistent time-scale, while reducing the

ariation of time-scale resolution at the sentence level. Empiri-

al results show that image caption generated in such manner is

ore precise in terms of object and attribute, compared to a pure

equential model using words as atomic unit. Moreover, the hi-

rarchical decoding process allows more novel captions with di-

erse word content to be generated. Our future work will focus

n designing of a phrase-based bi-directional model for image

aptioning. 
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