

Code

Motivation

Paper

- Previous works on federated unlearning have focused on client, sample, or class level unlearning.
- Feature unlearning in federated settings has not been explored.

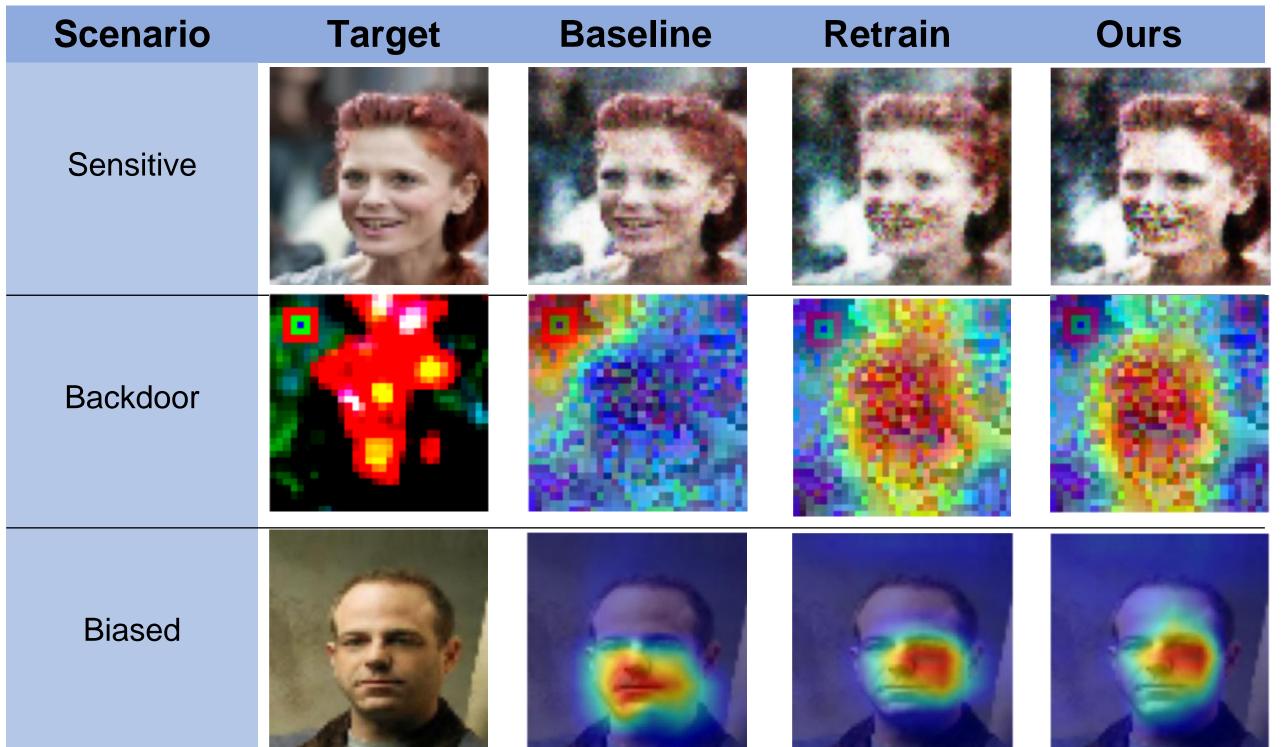
Challenges

- 1. Centralized unlearning methods impractical in federated settings:
- > Full training datasets with participation of all clients
- 2. Difficulty in evaluating the effectiveness of feature unlearning.
- Conventional method compared to the retrained model reduced model utility.

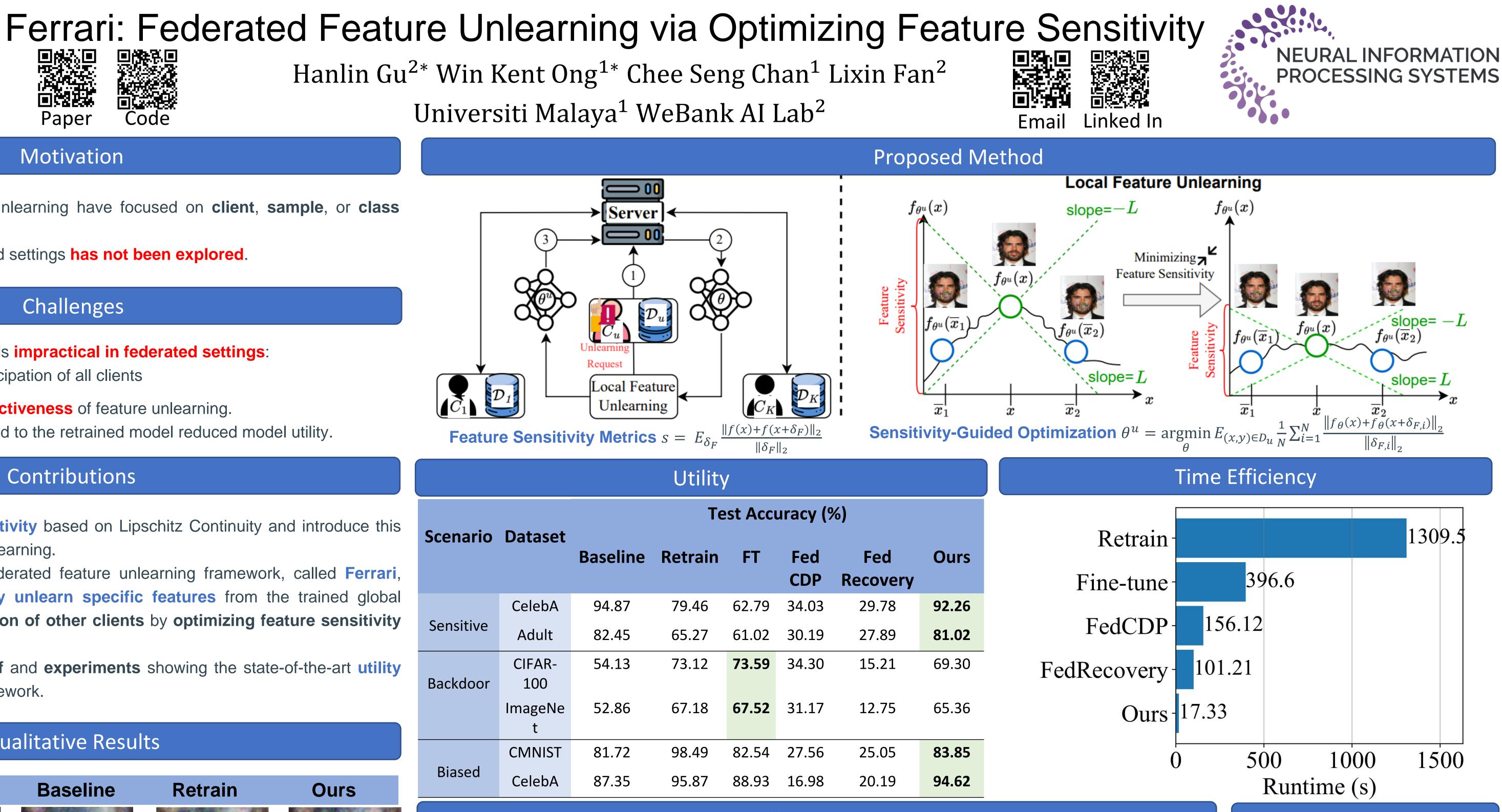
Contributions

- We define the Feature Sensitivity based on Lipschitz Continuity and introduce this metric in federated feature unlearning.
- II. We proposed an effective federated feature unlearning framework, called Ferrari, allowing clients to selectively unlearn specific features from the trained global model without the participation of other clients by optimizing feature sensitivity locally.
- III. We provide theoretical proof and experiments showing the state-of-the-art utility and effectiveness of our framework.

Qualitative Results



Universiti Malaya¹ WeBank AI Lab²



			Test Accuracy (%)						
Scenario	Dataset	Baseline	Retrain	FT	Fed CDP	Fed Recovery	Ours		
		CelebA	94.87	79.46	62.79	34.03	29.78	92.26	
	Sensitive	Adult	82.45	65.27	61.02	30.19	27.89	81.02	
	Backdoor	CIFAR- 100	54.13	73.12	73.59	34.30	15.21	69.30	
		ImageNe t	52.86	67.18	67.52	31.17	12.75	65.36	
		CMNIST	81.72	98.49	82.54	27.56	25.05	83.85	
	Biased	CelebA	87.35	95.87	88.93	16.98	20.19	94.62	

Effectiveness

LIECUVEIIESS											
Scenario	Metric	Datase	t	Baseline	Retrain	FT	FedCDP	FedRecovery	Ours		
	Model	CelebA		84.36	47.52	77.43	75.36	71.52	51.28		
Sensitive	Inversion Attack	Adult		87.54	49.28	83.45	72.83	80.39	49.58		
	Feature Sensitivity	CelebA		0.96	0.07	0.79	0.93	0.91	0.09		
		Adult		1.31	0.02	0.94	1.07	1.14	0.05		
	Accuracy	CIFAR-100	D_r	54.14	73.54	73.66	34.62	15.62	69.57		
D			D_u	88.98	0.00	65.38	57.29	46.17	0.15		
Backdoor		ImageNet	D_r	52.35	67.05	67.34	29.74	13.46	65.74		
			D_u	83.16	0.00	71.48	62.39	54.92	0.09		
	Accuracy	CMNIST	D_r	64.94	98.76	67.15	25.85	23.92	84.31		
			D_u	98.88	98.44	97.95	30.17	27.64	84.62		
Biased		CelebA	D_r	79.46	96.47	84.45	14.29	16.34	94.18		
			D_u	96.38	96.11	94.23	21.58	25.72	94.79		

Conclusion

- Ferrari is a federated feature unlearning framework that efficiently removes sensitive, backdoor, and biased features by requiring only the requesting client's participation. It leverages Lipschitz continuity to reduce model sensitivity and ensure fairness.
- Ferrari preserves privacy, complies with regulatory data deletion requirements, and maintains model performance, making it a practical solution for federated learning environments.