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Abstract The integration of advance human motion

analysis techniques in low-cost video cameras has emerged

for consumer applications, particularly in video surveil-

lance systems. These smart and cheap devices provide the

practical solutions for improving the public safety and

homeland security with the capability of understanding the

human behaviour automatically. In this sense, an intelligent

video surveillance system should not be constrained on a

person viewpoint, as in natural, a person is not restricted to

perform an action from a fixed camera viewpoint. To

achieve the objective, many state-of-the-art approaches

require the information from multiple cameras in their

processing. This is an impractical solution by considering

its feasibility and computational complexity. First, it is very

difficult to find an open space in real environment with

perfect overlapping for multi-camera calibration. Secondly,

the processing of information from multiple cameras is

computational burden. With this, a surge of interest has

sparked on single camera approach with notable work on

the concept of view specific action recognition. However in

their work, the viewpoints are assumed in a priori. In this

paper, we extend it by proposing a viewpoint estimation

framework where a novel human contour descriptor namely

the fuzzy qualitative human contour is extracted from the

fuzzy qualitative Poisson human model for viewpoint ana-

lysis. Clustering algorithms are used to learn and classify

the viewpoints. In addition, our system is also integrated

with the capability to classify front and rear views. Ex-

perimental results showed the reliability and effectiveness

of our proposed viewpoint estimation framework by using

the challenging IXMAS human action dataset.

Keywords Human motion analysis � Video surveillance

system � Computer vision � Fuzzy qualitative reasoning

1 Introduction

Video camera nowadays has become inexpensive and af-

fordable for the consumer applications. With the integra-

tion of advance technologies such as human motion

analysis (HMA) into the video camera system, it provides

the capability to understand the human behaviour auto-

matically from the video [1, 5, 8, 17, 21]. Such system has

raised the interest of the community to implement the in-

telligent video surveillance system [12, 13, 29]. To achieve

this, a robust intelligent video surveillance system with no

constraint on the person viewpoint is required. Conse-

quently, view-invariant HMA system is getting more at-

tention from the researchers [11], as in natural, human has

no restriction to perform an action at a fixed camera

viewpoint and this kept away the conventional view-de-

pendent HMA systems [1]. Many works have been reported

in view-invariant HMA, but most of the algorithms require

the information obtain from multiple cameras during their

processing such as the image features (e.g. shape) from

every camera for 3D human model reconstruction. This is

an impractical solution for two reasons. In a real-world

environment, it is a daunting task to locate a place with

good overlapping for multi-camera calibration. Further-

more, the processing using numbers of camera is very

computational expensive.
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In order to solve this, [15] presented a framework that

introduces the concept of performing multi-view action

recognition within single camera and we denote it as view

specific action recognition framework in our paper. The al-

gorithm requires first identifying the viewpoint of a person

captured from a video camera and followed by action clas-

sification using the corresponding viewpoint action model.

However, in their work, the viewpoints are assumed in a

priori. In this paper, we extend the work by introducing a

viewpoint estimation framework as depicted in Fig. 1. In the

process cycle, a human segment represented in silhouette

image is extracted from the input image frame and normal-

ized into the Fuzzy Quantity Space (FQS) [19] with aid of

Poisson solution [9] to construct the fuzzy qualitative Pois-

son human model (FQ-PHM). Then the novel fuzzy

qualitative human contour (FQHC) can be extracted from the

FQ-PHM for viewpoint learning and estimation.

In summary, our contributions and its corresponding ad-

vantages are as follows: (1) We proposed the FQ-PHM that is

invariant to human size and the body anatomy. In addition, the

FQ-PHM standardizes the body landmarks on the FQS. This

means ideally, the positions of the body parts are the same for

every human in FQ-PHM. (2) A novel human contour de-

scriptor called FQHC is generated from the proposed FQ-

PHM, which is capable of distinguishing different human

viewpoints. (3) An extra merit is given to our proposed

framework by introducing a mechanism to estimate front and

rear views of a person from a video camera, which is rather

important but neglected by most of the researchers. As a

summary, this framework can be integrated into the view

specific action recognition framework [15] as a prerequisite.

The rest of the paper is organized as follows. Section 2

covers the related works in view-invariant HMA and

viewpoint estimation. Our proposed FQ-PHM is discussed

in Sect. 3 with the demonstration of the FQHC generation.

Section 4 explains how we learn and estimate the view-

points by using clustering algorithms. Apart from that, the

mechanism to distinguish between front or rear views of a

person is presented. Section 5 discusses the experiment

settings and results. Finally, we conclude with suggestions

of future work in Sect. 6.

2 Related works

View invariant is one of the current trend in the research of

vision-based HMA with numbers of recent published sur-

veys [1, 10, 11, 17, 27]. However, most of the works focus

Fig. 1 The proposed viewpoint

estimation framework
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on the multiple cameras approaches where the information

from different viewpoints is required to achieve view-in-

variant capability [2–4, 25, 26, 28]. In these approaches,

they can be categorized into 3D human reconstruction

methods and multi-view geometry approaches.

In 3D human reconstruction methods, the 2D human

models obtained from multiple cameras are extended into

3D human models to reconstruct the human shape in the

volumetric space. For instance, the voxel person [3] is in-

troduced to reason elderly abnormal activity of falling with

fuzzy logic approach. Weinland [26] proposes a new

framework to model actions from multiple cameras by

spatially integrated into visual hulls and accumulate into

motion histogram volumes (MHV). View-invariant fea-

tures are extracted from the Fourier space of MHV for

action recognition.

On the other hand, epipolar geometry (the intrinsic

projective geometry between two views) is popular

nowadays to analyse body posture from cameras at dif-

ferent viewing angle for action recognition. For example,

[4] utilizes the epipolar geometry to induces a fundamental

matrix between two fixed cameras and the concept of

fundamental ratios is investigated, which are invariant to

camera intrinsic parameters in view-invariant action

recognition. Besides that, [28] introduces the extension of

standard epipolar geometry to the geometry of dynamic

scenes where the cameras are moving to study the action.

Although the above-mentioned approaches achieved

significant results in view-invariant action recognition, one

of the drawbacks of using multi-camera approach is that it

is only applicable to closed-controlled environment and it

is impractical and expensive to deploy in a real-world en-

vironment. [15] remedies these limitations by proposing a

framework to model human action from multiple view-

points and perform recognition within a single camera.

However, the viewpoints are assumed to be known in ad-

vance. In this single camera view-invariant HMA system,

the person viewpoint information is very important as the

pattern of similar action performed from different view-

points varies. [23] verified this in their work and further

showed that the better viewpoints are those where the ac-

tion is easy to recognize. Thus, they propose three mea-

surements (spatial, temporal and spatial-temporal) to detect

a good viewpoint where the action is recognizable. In their

experiment, they show that the selection of viewpoint does

improve the action recognition rate. Inspired from this

work, we understand the importance of analysing the dif-

ferent viewpoints correspond to the human actions. How-

ever, in the real world, a person is not always appearing at

the best viewpoint in front of the camera. In our work, we

take into consideration of all the viewpoints for different

actions instead of just selecting the best viewpoints for

corresponding human action as in [23].

In what constitutes the closer work to ours, [22] proposed

a methodology to perform viewpoint estimation from the

man-made environments to infer human activity. First, they

model the body poses and silhouettes using a reduced set of

training viewpoints. Second, they exploit projective ge-

ometry transformation for shape registration to improve

silhouette-based pose estimation of the subjects from the real

environment. Homography transformation is then employed

to align between the testing viewpoint to the corresponding

training viewpoint. Their work is currently tested only on the

walking activity with subjects that have almost similar shape

variation. Their methodology might suffer from the incon-

sistency in different human anatomy such as size, height, and

pose. What differentiates our work from theirs is we utilized

the Poisson solution incorporate with FQS to yield a nor-

malized fuzzy qualitative humanmodel, which we name it as

the FQ-PHM to handle the above-mentioned problems.

Moreover, our proposed approach is implemented with the

capability to learn and classify the viewpoints and also dis-

tinguish between front and rear views of a person.

3 Fuzzy qualitative Poisson human modelling

A sophisticated human modelling approach is very im-

portant to most of the HMA systems where it provides

much valuable information such as features for the infer-

ence process. In this paper, we proposed to model the

human body in a fuzzy qualitative manner called FQ-PHM.

To begin with, we extract the silhouette image of a person

from the input image. Secondly, we map the human sil-

houette into the FQS. However, a problem arises that,

without proper normalization technique, the human model

is irregular for every human subject in terms of scale and

position due to the variations of human anatomy, e.g. body

size, height and pose. Such variations will affect the per-

formance of the human model in extracting the features.

Following sections discuss on how we deal with this

problems by incorporating Poisson solution into the con-

struction of FQ-PHM and the extraction of the novel FQHC

descriptor for viewpoint estimation.

3.1 Construction of FQ-PHM

The overall pipeline to construct FQ-PHM is shown in

Fig. 2. As mentioned earlier, we provide a solution to

achieve better normalization of human body by applying

Poisson solution [9] and map it to the FQS. The purpose of

using Poisson solution is to obtain the reference point, r ¼
fxref ; yrefg of the person, which serves as the origin to map

to the FQS. In this paper, we define the reference point as

the lower part of the torso of a human body, which is

estimated through (1),
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½xmid; ymid� ¼ max½Uðx; yÞ�
xref ¼ xmid

yref ¼ ymid þ ð3 � ðL=5ÞÞ
ð1Þ

where Uðx; yÞ is the Poisson solution [9] of the human

silhouette and L is the vertical length of the subject in the

image. According to [15], this reference point can correctly

designate the position of the body parts, especially the

limbs. The principle behind is that value of U increases

quadratically as it approaches to the centre. The level sets

of U represent smoother versions of the bounding contour

with the external protrusions, (where in human context, it

refer to the limbs and head) disappearing at relatively low

values of U. This is different from the distance transform,

which smoothens the shape near concavities while intro-

ducing discontinuities near convex sections of the contour.

Also unlike the distance transform in which every value is

determined by a single contour point (the nearest), the

values assigned by the Poisson equation take into account

many points on the boundaries and so they reflect more

global properties of the silhouette. In human representa-

tion, this is giving prudent information as ideally the

highest value from the Poisson solution is at the middle of

the torso part (highest intensity of red colour in Poisson

human model in Fig. 2). This is because in general the

torso is the largest part of human body. Here, it helps to

retrieve the lower torso part with (1) and serves as a ref-

erence point to map the human body with the normalized

range of ½0 1�, Bnorm into the FQS.

Bnorm 7! FQS ð2Þ

The construction of FQ-PHM adopted the FQS that was

introduced in [19]. It consists of translation components (x

& y-axis) that are denoted as FQSx and FQSy and orien-

tation component (unit circle) that is denoted as FQSo with

their implicit qualitative states, QS as represented in (3).

FQSx ¼ QS1x ;QS
2
x ; . . .;QS

M
x ;

� �

FQSy ¼ QS1y ;QS
2
y ; . . .;QS

M
y ;

n o

FQSo ¼ QS1o;QS
2
o; . . .;QS

N
o ;

� �
ð3Þ

These components of FQS utilized a parametric ap-

proximation of the membership function to represent the

qualitative state where the membership distribution of a

normal convex fuzzy number is approximated by the 4

tuples, QS ¼ ½a; b; a; b� [24]. In the recent trends, 4-tuple

fuzzy numbers have been utilized in constructing the

qualitative states [6, 16, 19] that endowed with the capa-

bility to model the uncertainties.

The qualitative state is constructed from the 4 tuples as

shown in Fig. 3, in this way, when there does exist a pre-

cise qualitatively distinct landmark value, this value can

also be represented in the form of a 4-tuple fuzzy number.

Furthermore, even if the landmarks are only partially

known, say, in terms of the lower and upper boundaries of

the range within which a landmark value falls, such

Fig. 2 The overall pipeline to generate FQ-PHM. This figure is best viewed with colour

Fig. 3 4-Tuple qualitative state
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knowledge can still be encoded by the 4-tuple version of a

real interval.

In this work, we empirically choose the total number

of qualitative state in the translation components as

M ¼ 21 and total number of state in the orientation

components to be N ¼ 36 but not limited to. The

number of qualitative states is application dependent.

In general, too many the qualitative states will increase

the computational complexity and also causes the

overfitting problem. On the other hand, too less the

qualitative states will reduce the effectiveness of the

overall system as the fuzzy interval is too broad and

might be unable to obtain the vital information of the

human parts. To understand it further, [14] provides

better explanation on the effect of different qualitative

states. In fact, such representation outperforms the

crisp Cartesian and unit circle by its capability of re-

laxing the uncertainties abounded in the processing [6,

14, 16, 18, 24].

In addition, it is worth to highlight that the advantages of

the FQ-PHM is scale invariant and position standardized

(Fig. 4). The normalization step of the human body uti-

lizing the reference point allows the fixation of the human

body parts to the FQS. For example, the head is always fall

into FQSx ¼ fFQS10x ; FQS11x ; FQS12x g and FQSy ¼
fFQS2y ; FQS3y ; FQS4yg as can be observed from Fig. 4. From

the figure, we can conclude that the proposed FQ-PHM is

able to normalize the different human anatomy such as

body sizes, heights and poses. In the next step, we will

demonstrate the extraction of FQHC descriptor from the

proposed FQ-PHM for viewpoint learning.

3.2 Fuzzy qualitative human contour descriptor

With years of study about human vision in cognitive sci-

ence, neuropsychology, and neurophysiology, the re-

searchers agreed with the argument that human recognizes

an object from its appearance such as the contour, texture,

and colour information [20]. Many researches in computer

vision are inspired by this with the notable work in human

detection, and histogram of gradient (HOG) descriptor is

introduced in [7]. To the extend, in this paper, we extract

human contour descriptor from the proposed FQ-PHM

using the distance computation from the reference point

towards human edges as demonstrate in Fig. 5.

We first obtain the set of outer edge pixels, ej, of the

human model for every QSo and denoted as PQSno
,

PQSno
¼ fe1; e2; . . .; eJg 2 QSno ð4Þ

where n ¼ 1; 2; . . .;N. We then compute the average of the

distances from the reference point towards all the edge

pixels that are bounded in the corresponding QSo and

designated as �DQSno
,

�DQSno
¼ 1

PQSno

�� ��
XJ

j¼1

ej � r
�� ��2 ð5Þ

Next, a descriptor for the human contour is constructed and

represented as feature vector, s (6) with clockwise direction

as shown in the right image of Fig. 5a. The dimension of s

is determined by the resolution of the orientation compo-

nent, N in the FQS, where here we use N ¼ 36.

s ¼ �DQS1o
; �DQS2o

; . . .; �DQSNo

n o
ð6Þ

Fig. 4 First row from left to right represents the human silhouette

images from the size of small to large. Second row shows the

corresponding FQ-PHM. From the figure, one can notice that the size

and the position of the body parts are almost similar for all the human

subjects once they are being normalized onto the FQS with the

reference point as the origin
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One of the reasons of using averaging distance with

bounded FQSo is to create the descriptor with feature

vector of fix dimension. By comparing it with directly

using the edges information from the human silhouette, the

feature vector can be in various dimensionalities due to the

different sizes of every human subject. This causes the

difficulty for the viewpoint learning in the next step.

Besides that, the averaging of the edge pixels in the

qualitative states can smoothen the inconsistency of some

edge pixels due to the noise for better interpretation. The

extracted human contour descriptors will then use to learn

the viewpoints and generate the viewpoint classifier, which

will be discussed in the next section. For better under-

standing, the the construction of FQ-PHM and the extrac-

tion of FQHC is summarized in Algorithm 1.

Fig. 5 a In the left image, we

compute the distance from the

reference point to the outer

edge. The distance is organized

according to clockwise direction

as shown in the right image.

b The example of the output of

FQHC descriptor by averaging

the distance in each orientation

states of the FQS
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4 Viewpoint learning and estimation

In order to justify the capability of the extracted human

contour descriptors in distinguishing different human

viewpoints, we employed unsupervised learning method

(clustering algorithm) in learning a set of predefined

viewpoints. Besides that, the learning outcome can be used

as the classifier for viewpoint estimation task. In addition,

we proposed a mechanism to distinguish between front and

rear views besides the predefined viewpoints of a person

from a camera.

4.1 Viewpoint learning from human contour

descriptors

From the visual inspection in Fig. 6, one can notices that

the FQHC descriptors are different from one viewpoint to

another. Preliminary from this observation, we presume

that the FQHC descriptor extracted from the FQ-PHM

possesses the capability to differentiate different view-

points. In order to verify this, we employed the clustering

algorithm such as K-means (KM) and Fuzzy c-means

(FCM) to learn the viewpoints.

Depend on the objective of a system, reader can set their

own number of cluster. In this work, the cluster means the

different viewpoints. To make it simple, we adopted the set

of viewpoints defined in [15] which are horizontal view

(v1), diagonal view (v2), vertical view (v3) and top view

(v4) as visualized in Fig. 7 in our framework. These are the

most common viewpoints that will be encountered from a

video camera. According to [22], these viewpoints are

sufficient for viewpoints analyses. Therefore, the number

of cluster is K ¼ 4 corresponding to each types of view-

points, V ¼ fv1; v2; v3; v4g. With the collection of the hu-

man contour descriptors, S ¼ fs1; s2; . . .; sTg is extracted

from the training images, clustering algorithms to learn the

viewpoints clusters are used, and the outcomes are ex-

pected to be similar to Fig. 7 with each of the descriptor; s

is correctly assigned to their corresponding viewpoint

cluster.

The main objective of this work is to perform view-

point estimation, and in order to achieve that, we need a

classifier to infer the viewpoint from an input image. As

aforementioned in this section, the outcome of the

viewpoint learning can be used for the classification

purpose, but not directly. This is because of the random

initialization of the clustering algorithm that prevents us

from knowing the corresponding cluster centre, C ¼
fcv; v 2 Vg to each of the viewpoints, v. In order to

make the outcome a classifier, we need to assign the

correct viewpoint label to the cluster centres. To achieve

this, we count the occurrence of the viewpoints in each

cluster outcome by matching it to the ground truth. The

maximum viewpoint is assigned as the corresponding

label for that cluster centre. As a result, one can simply

use C as the classifier to estimate the person viewpoint

of a testing image with distance metric calculation such

as L2-norm.

4.2 Front- and rear-view estimation

Although the viewpoint classifier learned from the previ-

ous section can estimate the human subject into its cor-

responding predefined viewpoints (v1 to v4), it is unable to

Algorithm 1 FQHC EXTRACTION FROM FQ-PHM
Require: An input image
Step 1: Silhouette extraction. Perform silhouette extraction to obtain binary representation of human
body.
Step 2: Apply Poisson solution. Apply (1) towards the human silhouette image to obtain the reference
point, r.
Step 3: Mapping to FQS. Normalize the human silhouette into the FQS with the range of [0 1] and r
as the origin to obtain FQ-PHM.
Step 4: Extract human contour descriptor.
for all QSn

o such that 1 ≤ n ≤ N do
for all ej such that 1 ≤ j ≤ J do
Compute average of the distances, D̄QSn

o
from r to ej using (5).

end for
end for
return FQHC Descriptor, s
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determine whether a person is facing frontal or backward

towards the camera. This is an additional cue for a HMA

system in higher level interpretation such as behaviour

understanding. For instance, the system can infer that

action is hidden to a person who is facing backward to the

camera and decided to increase the attention towards him

or her and deduce the possible actions. Or on the other

hand, the system might just ignore it to relax the com-

putational cost. In this paper, we offer a solution to de-

duce front and rear views of a person by analysing the

grayscale distribution of the human head as demonstrate

in Fig. 8.

As a matter of fact, front- and rear-view estimation is

only applicable to diagonal and vertical views (v2 and v3).

Thus, in the viewpoint estimation process cycle, we first

determine whether the person is facing diagonal, v2; or

vertical, v3; views at the first stage. Then, we utilize the

advantage of position standardized FQ-PHM to locate the

head position of the person. This is done with human as-

sistance but is only one time process. In this paper, based

on the fixed number of the FQS translation components

(M ¼ 21), we estimate that the head of a person is mostly

appear at FQSx ¼ fFQS10x ; FQS11x ; FQS12x g and FQSy ¼
fFQS2y ; FQS3y ; FQS4yg. After we retrieved the head region,

we obtain its grayscale histogram and compute the degree

of homogeneity, H of the head using

H ¼ 1� cð_q� ^qÞ
_h� ^h ð7Þ

q ¼ maxðhÞ=5 ð8Þ

where _h and ^h are the lower boundary and upper

boundary of the grayscale distribution of the head, similar

to _q and ^q as the lower and upper boundary of the

grayscale region after the alpha cut, q with (8), respec-

tively. c is the weighing parameter where we set c ¼ 1:8 to

ensure that more weightage is put into the interpretation of

the grayscale region (^q� _q) as this is the dominant re-

gion that distinguishes between front and rear views in our

case. The setting for alpha cut and the c value can vary

from one camera setup to another depend on the quality of

image. Empirical solution is chosen for the best perfor-

mance from the testing.

Fig. 6 Examples of different FQHC descriptor for a diagonal and vertical views, b horizontal view and c top view

Fig. 7 Expecting learning outcome of the viewpoint clustering
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The intuition of employing the degree of homogeneity

here is, if a person is facing frontal to the camera, the

degree of homogeneity of the person head is low be-

cause of the large grayscale dispersion caused by the

inconsistent illumination from the face components

(eyes, nose, ears and mouth). On the other hand, when a

person is facing backward to the camera, the degree of

homogeneity will become higher due to the consistent

illumination from the hair or smooth skin which is as-

sumed to have constant colour characteristic. Finally,

front or rear view is deduced with a threshold, t. Al-

gorithm 2 summarizes the steps from viewpoint learning

to viewpoint estimation.

5 Experiment

In order to evaluate the reliability and the effectiveness of

our proposed framework, we conducted two experiments

where first is to test the discriminative strength of the

FQHC descriptor in differentiate each predefined view-

points and secondto test the effectiveness of the learned

classifier and the front- and rear-view estimation algorithm.

Both experiments employed IXMAS dataset that is pub-

licly available at http://4drepository.inrialpes.fr/public/

viewgroup/6. The predefined set of viewpoints from [15]

(v1, v2, v3 and v4) is employed in the experiments with

human annotated ground truth.

Fig. 8 Different grayscale

distribution of front and rear

views of human heads. The first

and second columns show the

rear view of human heads with

theirs corresponding grayscale

distributions, while third and

fourth columns show the

grayscale distributions

corresponding to the front-view

human heads. One can notice

that the grayscale distribution of

front views is more disperse

than that of the rear views

Algorithm 2 VIEWPOINT LEARNING AND ESTIMATION
Require: Collection of human contour descriptors, S and a set of predefined viewpoints to determine the
cluster number, K .
Step 1: Perform Clustering. Perform viewpoint learning by applying clustering algorithm to assign S
to corresponding viewpoint cluster, C.
Step 2: Labeling clustering output. The arbitrary cluster centres from the learning outcome, C are
labeled with the corresponding viewpoint by obtaining the maximum viewpoint label of each cluster
with ground truth matching.
Step 3: View estimation. Perform viewpoint estimation by using C from the previous step as classifier.
if classified as v2 or v3 do

Locate the head position by utilizing FQ-PHM and compute the degree of homogeneity of the head
using (7). Determine front or rear view with threshold, t.

end for
return Estimated viewpoint
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5.1 Discriminative strength of fuzzy qualitative

human contour descriptor

The main objective of this experiment is to evaluate the

capability of the FQHC descriptors that are extracted from

the FQ-PHM in distinguishing one viewpoint from another.

From the IXMAS dataset, we assume that the human

subjects are in his or her initial standing position by ex-

tracting only the first five frames from each video captured

by the cameras from all the viewpoints. We compared the

performance of our proposed FQHC descriptor with HOG

descriptor [7] by using KM and FCM as the clustering

techniques, and the results are being evaluated in term of

precision and recall. We perform 20 trials for each of the

testing and the average results are reported in Table 1.

From Table 1, the precision and recall for v1 and v4
achieved high precision and recall but v2 and v3 are giving

fair results. This is due to the confusion between the diagonal

and vertical views as demonstrated in Fig. 9a. The human

contour descriptors for v2 and v3 are found to be very similar

to each other and thus induced confusions in the classifica-

tion result. Although this is acceptable in the real environ-

ment, human has the difficulty to distinguish them too.

Due to the randomness of initialization in clustering

algorithm, we are likely to obtain undesirable clustering

outcome (which we defined it as fail case). However, this

can be a good evaluation criterion to determine the dis-

criminative strength of a descriptor. In common practice,

the higher the success rate of a clustering algorithm to

cluster the input data into the desire cluster, the better the

discriminative strength of the descriptor is. Table 2 shows

the error rates of the clustering results.

FQHC descriptor extracted from the FQ-PHM performed

well with KM and FCMwith low error rate but HOG receive

high error rate in KM and even failed to perform clustering

with FCM as shown in Table 1. From these results, we can

conclude that not only selecting clustering technique is an

important concern on the learning of the viewpoints but also

higher attention should be put on the discrimination strength

of the descriptor. From this experiment, FQHC descriptors

that are extracted fromFQ-PHMhave achieved the objective

with better reliability.

5.2 Evaluation on the viewpoint estimation

In this experiment, we tested two things. First, we use the

cluster centres that learned from the previous experiment as

a viewpoint classifier to estimate between side (v1) and

non-side (v2, v3) viewpoints using minimum L2-norm

calculation. Secondly, we differentiate between front and

rear views of the person from all the non-side views with

our proposed mechanism. This is because side view does

not valid for front- and rear-view estimation. In order to

test the effectiveness and the robustness of our proposed

method, we used different set of testing data, which con-

sists of a total of 2250 image frames from the ‘‘turnaround’’

Fig. 9 The examples of confused viewpoints. Its ground truth is

denoted as GT, and the computational result is denoted as CR. We can

notice that the right image in a, the CR is conflict with GT where the

computer miss classified it as v3. While in b, the right image is miss

classified as v1. Although they are misclassification cases, but in

human visual perspective, this is forgivable as both are very similar to

their corresponding left images

Table 2 Error rate of the clus-

tering results from 20 trials
Error rate

FQ-PHM_KM 0.2

FQ-PHM_FCM 0.3

HOG_KM 0.8

HOG_FCM 1.0

Bold value indicates the best

clustering result with the least

error rate

Table 1 Precision (Ps) and Recall (Rc) for the clustering results

v1 v2 v3 v4

Ps Rc Ps Rc Ps Rc Ps Rc

FQ-PHM_KM 0.92 0.74 0.57 0.57 0.58 0.72 1.00 0.99

FQ-

PHM_FCM

0.83 0.87 0.65 0.58 0.66 0.72 1.00 0.99

HOG_KM 0.67 0.82 0.54 0.36 0.64 0.58 0.91 1.00

HOG_FCM Fail Fail Fail Fail Fail Fail Fail Fail

Bold values indicates the best clustering result with the highest pre-

cisions and recalls

Table 3 Precision and recall

for the side and non-side

classification

View Precision Recall

Side 0.61 0.67

Non-side 0.81 0.77
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action in IXMAS dataset (noted that the top view, v4 is not

included in this testing). The precision and recall for the

side and non-side viewpoints estimation is shown in

Table 3, while the result for front- and rear-view estimation

corresponds to different threshold values, and t is presented

in Fig. 10.

From Table 3, we obtained moderate results for side

view but high precision and recall for the non-side view.

Similarly, during the ‘‘turnaround’’ activity, there are

frames that confused between side and non-side views

because of slight movement of the person as shown in

Fig. 9. Such confusions deteriorate the classification result.

As for the front- and rear-view estimation, Fig. 10

shows that the threshold value t ¼ 0:75 is found to be the

best threshold in the testing. However, this is varies from

one setup to another, so reinitialize of the threshold value is

necessary for a new camera setup. Conclusively, the esti-

mation of viewpoints using the proposed algorithm and the

estimation of front and rear views is achieving reasonable

results.

6 Concluding remarks

We presented a novel human modelling methodology by

incorporating the Poisson solution and the FQS yielding a

new human model called the FQ-PHM that is proved to be

invariant to different human anatomy (e.g. size, height, and

pose) and is position standardized. In order to perform view

estimation, FQHC descriptor is introduced that is extracted

from FQ-PHM to represent the human contour, and its

discriminative strength to distinguish different viewpoints

has been tested with KM and FCM clustering algorithms.

The experiments outcomes have shown their potential to be

a classifier to infer different viewpoints. Moreover, we

introduce a simple yet effective mechanism to determine

front and rear views of a person by utilizing the FQ-PHM

to locate the person’s head with the measurement of its

degree of homogeneity.

In this work, we achieve reasonable results for the ex-

periments and apparently FQHC descriptor outperform the

state-of-the-art HOG descriptor in viewpoint learning.

However, the crisp classification method in the viewpoint

estimation yields the confusion between the similar view-

points, which will deteriorate the overall performance of

the system. In future, we foresee that using fuzzy set theory

to alleviate the crisp classification result can be a feasible

solution to relax the above-mentioned problem.
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