SwATrack: A Swarm Intelligence-based Abrupt Motion Tracker
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Abstract

Conventional tracking solutions are mot feasi-
ble in handling abrupt motion as they are based
on smooth motion assumption or constrained motion
model; where the motion is often governed by a fized
Gaussian distribution.  Abrupt motion however, is
not subjected to motion continuity and smoothness.
To assuage this, we propose a novel abrupt motion
tracker that is based on swarm intelligence - the SwA-
Track. Unlike existing swarm-based filtering methods,
we firstly introduce an optimised swarm-based sampling
strategy to enrich the trade-off between the exploration
and exploitation of the search space in search for the
optimal proposal distribution. Secondly, we propose
adaptive acceleration parameters to allow on the fly
tuning of the best mean and variance of the distribution
for sampling. The adaptive strategy requires no train-
ing stage thus allowing flexibility in the motion model,
while relaxing the number of particles deployed. Exper-
imental results in both the quantitative and qualitative
measures demonstrate the effectiveness of the proposed
method in tracking abrupt motions.

1 Introduction

Visual tracking is pertinent in the tasks of motion-
based recognition, automated surveillance and human-
computer interaction [1]. In general, tracking is often
simplified by assuming that the prior knowledge about
the motion is governed by Gaussian distribution based
on the Brownian or constant-velocity motion models
[1, 2]. These assumptions however, do not hold true for
many real world scenarios that exhibit abrupt motions
such as in low frame rate videos, camera switching and
fast motion. In this study, the abrupt motion refers to
motion (position) that is random and changes at irreg-
ular intervals with unknown pattern; and cannot be
modelled simply as the Brownian or constant-velocity
motion model.

While considerable research efforts exist in relation
to visual tracking, only a handful correspond to abrupt
motion [3, 4, 5, 6]. Amongst them, most have been fo-
cused on online learning techniques to handle abrupt
changes in the appearance instead of motion. In what
constitutes the closer work to ours, Wong and Dooley
[3] proposed a template-matching algorithm to track
table tennis ball. Their method applied an automated
two-pass segmentation method to detect the ball, fol-
lowed by a Block Matching Detection (BMD) to specify
the position of the ball. This detection-based strategy
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however, is impractical as it is highly dependent on the
search window size and is computationally expensive.

Kwon and Lee [4] recently proposed the integration
of Wang Landau sampling strategy into the Markov
Chain Monte Carlo framework (A-WLMC) to deal
with abrupt motion. The current frame is divided
into N equal size sub-regions, and then the density
of each sub-region is learned by the proposed algo-
rithm to guide the state transition. In another vari-
ation, a feature-driven motion model from accelerated
segment test feature matching is integrated into the
particle-filtering (PF) framework by Liu et al. [5]. In
[6], another adaptive sampling strategy coupled with
a density-grid-based predictive model (IA-MCMC) is
introduced to cope with abrupt motion. While these
works have shown good results, they are still based on
Monte Carlo sampling and require training stages that
consequently increase the computational requirement.
In short, an accurate tracking algorithm with reduced
computational requirement remains a key challenge.

In summary, the contributions of this paper includes:
1) The proposal of a swarm intelligence-based abrupt
motion tracker. To the best of our knowledge, there
is yet to be any swarm intelligence-based method that
handles abrupt motion. Most of the abrupt motion
trackers are based on Monte Carlo sampling or its vari-
ations that combines Monte Carlo sampling + swarm
intelligence; which are computationally expensive. 2)
No learning stage is required from specific training
data, thus providing flexibility while reducing the com-
putational cost.

The rest of this paper is organised as follows. In
Section 2, the motivation of the proposed work is pre-
sented, followed by a detailed explanation of the pro-
posed algorithm in Section 3. Experimental results
and discussion are given in Section 4, while Section 5
concludes this study.

2 Motivation

Visual tracking using stochastic solution is popular
and involves a searching process for inferring the mo-
tion of a target known as the state, z; from uncer-
tain and ambiguous observations, z at a given time, t.
Given observations, z1.;—1 = {z1,... 2z — 1} from time
t=0 to t=1, the prediction stage applies the probabilis-
tic transition model p(z; |2:—1 ) to predict the posterior,
p(r;| z1:4-1) as Eq. 1.

To facilitate efficient tracking, in general, it is very
common to simply use Brownian or constant-velocity
motion models governed by Gaussian distribution with



fixed mean and variance. However, these assumptions
fail when the motion of the target is abrupt. In such
case, tracking tend to drift from the actual position
even though the appearance model is flawless. This is
due to the inefficient samples which are drawn from
the incorrect state space. Conventional particle-based
tracking are known to suffer from degeneracy and sam-
ple impoverishment phenomenon. The former implies
that a large computational effort is devoted to updat-
ing particles whose contribution to the approximation
to p(x¢|z1.¢) is almost zero, while the latter leads to a
loss of diversity among the particles.

Tracking with particle swarm optimisation (PSO)
however, assuage the degeneracy and sample impov-
erishment phenomenon by optimising the search for
the optimal distribution without any assumptions or
prior knowledge on the target’s motion. In general,
PSO tracking involves propagating a swarm of parti-
cles over the image at random with the aim of searching
for the best-fit search window or proposal distribution
of a target. The state and velocity of the ith particle
are updated by

P(xt | 21:t71) = /p(ft \ $1:t71)P($t71 | Zl:tfl)dxtfl
(1)

2% B N %,
Tyi = T v (2)

vl = (wxvy?) + (¢ep x 71 * (pBesty? — xy7)) @)

+(c2 12 (gBest, — xy”))
where v is the velocity of the particle, w, r1, 72, ¢ and
co are the acceleration constants, pBest is the best po-
sition from the particle’s individual search history and
gBest is the swarm’s best solution which is also the
optimal position. The cooperative interaction and in-
formation exchange between particles in PSO offers an
organised way to escape the local maxima and achieve
the global maximum. A known drawback of the con-
ventional PSO is its sensitivity to the parameters set-
tings and the lack of a reasonable mechanism to control
the acceleration parameters. This, when is applied into
tracking abrupt motion will constrain the exploration
and exploitation of the search space. Thus, the full
potential of the PSO algorithm has not been utilised.

3 Proposed Tracking - SwATrack

The proposed SwATrack is a variant of the conven-
tional PSO to track target with abrupt motion. SwA-
Track is composed of two main components, i) appear-
ance model that is usually the visual appearance cue
and ii) velocity, v - we denote this as the motion model
that describe the evolution of the state with time. In
this paper, the appearance model is fixed - the HSV
colour histogram and we focus on the study of a novel
representation of the motion model that copes with
abrupt motion efficiently.

3.1 Dynamic Model

The conventional PSO velocity estimation, v where
we denote as the motion model in Eq. 3 is still sub-
jected to a constraint search space and may fail to

cope with some degree of abrupt motion. This is due
to the fixed constant acceleration variables that re-
quire prior fine-tuning. In addition, we discovered that
there is statistical relationship between these parame-
ters. Thus, to ease self-tuned of these parameters by
observing the quality of estimation, we introduced a
novel motion model, v':
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where F is the exploration rate and ¢, r,w are adaptive
parameters with condition p(w Nep Neg) = 1.

3.1.1 Exploration rate, E

We define the exploration rate, E as the parameters
that adaptively i) increase the exploration with high
variance and ii) increase the exploitation with low vari-
ance.

At every iteration, the quality of estimation for each
particle is evaluated by its corresponding fitness value
f(x). f(z!) — 1 indicates high likelihood whereas
f(zt) — 0 indicates low likelihood or no similarity
between an estimation and target. Thus, if f(x?) <
Trrink, E is increased along with the maximum num-
ber of iterations, T' by empirically determined stepsizes
m and n respectively. This drives the swarm of par-
ticles to explore the region beyond the current local
maxima, when the target cannot be tracked within a
smaller region specified earlier (increase exploration).
In contrary, when the particle search quality improves,
(f(z%) < Tarinr), E is decreased alongside T, con-
straining the search around the current local maximum
(exploitation). By utilising these exploitation and ex-
ploration abilities [7], our method is capable to track
abrupt and smooth motions accurately and robustly;
since there is no fixed assumption on the region for
particles sampling.

3.1.2 Adaptive Acceleration Parameters

A drawback of the conventional PSO is the lack of a
reasonable mechanism to control the acceleration pa-
rameters (w, ¢ and 7); which are constant. This lim-
its the search space and therefore could not cope with
abrupt motion. To overcome this, we propose a mech-
anism to self-tune the acceleration parameters by util-
ising the velocity information of the particles. Firstly,
we normalised the acceleration parameters so that they
can be compared fairly with respect to the estimated
velocity: p(wNep Neg) = 1.

The motion of the target throughout K number of
frames is analysed to self-tune the settings of the in-
ertia, w, cognitive, ¢1, and social weight, c;. When
an object moves consistently in a particular direction,
the inertia, w and cognitive weight, ¢; values are in-
creased to allow resistance of any changes in its state
of motion in the later frames. Otherwise, the social
weight ¢y is increased by a stepsize to reduce its re-
sistance to motion changes. The increase of the social
weight allows global influence and exploration of the
search space, which is relevant when the motion of a



target is dynamic. Finally, the positions of the par-
ticles, Xy, (x¢71,y011,wilq,hil), are updated accord-
ing to Eq. 2 until the swarm reaches convergence.

4 Experimental Results

This section experimentally validates our approach,
showing that SwATrack can consistently track a target
that moves with abrupt motion. Here, the tracking im-
plementation and evaluation criteria are discussed. We
evaluate the performance of the proposed method us-
ing three public table tennis dataset. Two separate
comparisons are performed; i) comparison with the
two state-of-the-art methods, a variation of template-
matching method, BMD [3] and PF as proposed in [8];
and (ii) comparison with conventional PSO tracking
(where the acceleration parameters are of fixed con-
stants). Note that the parameters in BDM and PFs
are optimised to obtain the best results for compari-
son. In addition, we validate our tracking results quali-
tatively using three videos obtained from Youtube and
the benchmarked Tennis sequence [4, 6].

We initialise manually the 2D position of the target
to be tracked in the first frame, and define a 15x15
pixels patch around the 2D position of the target as
the reference frame. We employ colour histogram as
our appearance model. The quality of the estimation
is measured by its fitness value, which is represented
by Bhattacharyya coefficient. Here, the initial values
for SwATrack are F=25, Thrinp=0.6, w=0.4, c1=0.3,
co=0.3, T=10, m=0.1 and n=0.1, respectively. Note
that the choices of the initial values are not as crucial,
given the adaptive tuning of these parameters in the
proposed method.

4.1 Performance Evaluation

We quantify the accuracy using detection rate. A
detection is deemed correct if both of the criteria are
met: Firstly, the same identity should be given to the
corresponding object and secondly, the F' — measure,
F; of jth object is > 0.5. Otherwise, tracking is classi-
fied as incorrect. The detection rate indicates the ratio
between the number of correctly detected frames and
the total number of frames in which the object appears
in the scene.

4.2 Quantitative Analysis

A set of 3 test sequences that are obtained from table
tennis game 1,2, were used for evaluation. Besides
the abrupt motion of the ball, these sequences also
exhibit (i) highly textured background; (ii) occlusions;
(iil) small target size - about 8x8 to 15x15 pixels for an
image resolution of 352x240 and (iv) low frame rate.

As shown in Table 1, the proposed algorithm out-
performs the conventional PSO, PF and BDM even
though the scale of ball becomes very small with minor
occlusion. This is because existing trackers often fail to
track the table tennis ball accurately when it exhibits

LSIF data from http://www.sfu.ca/ ibajic/datasets.html

2ITTF training dataset from http://www.ittf.com/
committees/umpires_referees/video/training/index.html

3Xgmt open dataset from http://xgmt.open.ac.uk/table_
tennis

(a) Frame 11 of Dataset 1

SwaTrack (#20) PSO (#20) PF (#1000) BDM

(b) Frame 85 of Dataset 2

SwATrack (#25) PF (#500)

Frame 32 Frame 35 Frame 32 Frame 35

. (c) Frame 32 and 35 of Dataset 3
Figure 1. A comparison between our proposed

method - SwATrack, PF, PSO and BDM on three
publicly available datasets.

\ | SwATrack | PSO | PF [8] [ BDM [3] |

‘ Dataset 11 ‘
Accuracy (%) 92.1 86.4 | 82.0 81.3
Time (ms) 20.9 422 | 92.6 100.0

‘ Dataset 22 ‘
Accuracy (%) 98.8 95.0 | 86.3 62.5
Time (ms) 22.8 30.6 | 90.8 105.0

| Dataset 3° ‘
# particles 15 15 1000 N\A
Accuracy(%) 98.4 95.5 | 80.3 98.4
Time (ms) 195 | 358 | 628 | 100.0

Table 1. Comparison of the tracking results be-
tween SwATrack, PSO, PF and BDM

sudden change in motion as shown in Fig. 1. Although
an increase in the number of particles in PF and an in-
crease in the search space size in BDM would often
increase their tracking accuracy, this is however, infea-
sible in practice. This is due to the large search space of
the object state, which will lead to extremely expensive
computational cost. In another alternative, an accu-
rate motion model can be used to estimate the search
space. However, an accurate motion model needed to
be learned from a set of training data and thus does not
cope well with unknown motion. In comparison, our
proposed SwATrack does not make assumption on the
motion model. Instead, the motion model is optimised
at each frame by utilising the interactions between par-
ticles in a swarm for a more accurate tracking of abrupt
motion. In addition, the proposed SwATrack requires
minimal number of particles; about 10-20% of the sam-
ples used in PF. When the ball exhibits sudden change
in its motion, the proposal distribution changes drasti-
cally and thus leads to inaccurate tracking when sam-
ples are drawn using the presumed Gaussian model.
In PF, resampling from the incorrect distribution over
a number of frames propagates the error and thus the



(a) PF

(b) A-WLMC

(c) IA-MCMC

(d) SwATrack
Figure 3. A comparison between SwATrack, PF,

A-WLCM[4] and TA-MCMC]6].

estimation is trapped in local optima. Meanwhile, the
conventional PSO performs better tracking than the
PF and BDM methods. However, the acceleration pa-
rameters are not fully utilised in PSO, making it more
time-consuming and inconsistent as compared to the
proposed method.

4.3 Qualitative Analysis

Further evaluation on SwATrack on videos obtained
from Youtube is as depicted in Fig. 2. (i) Abrupt
motion: The first and second sequences aim to track
a synthetic ball which moves randomly, and a soc-
cer ball which is being juggled in a free-style man-
ner with highly textured background. It is observed
that SwATrack is able to track the targets accurately.
(ii) Multiple targets: The third sequence demon-
strates the capability of the proposed system to track
multiple targets; two simulated balls moving at ran-
dom. Most of the existing solutions are focused on
single target. Finally, (iii) Low-frame-rate video:

The fourth sequence aims to track a tennis player in
a low-frame rate video, which is down-sampled from
a 700 frames sequence by keeping one frame in every
20 frames. Here, the target (player) exhibits frequent
abrupt changes which violate the smooth motion and
constant velocity assumptions. Thus, motion that is
governed by Gaussian distribution based on the Brow-
nian or constant-velocity motion models will not work
in this case. Fig. 3 shows sample shots to compare the
performance between conventional PF tracking (500
samples), A-WLMC (600 samples)[4], TA-MCMC (300
samples)[6] and SwATrack (50 samples). It is observed
that the tracking accuracy of SwATrack is better than
PF and A-WLMC even by using fewer samples. While
the performance of SwATrack is comparable to TA-
MCMC, SwATrack requires fewer samples and thus
requires less processing requirement. These results fur-
ther verify that the proposed method is able to track
the moving targets accurately and effectively, regard-
less of the variety of change in the target’s motion.

5 Conclusion

We presented a novel swarm intelligence-based
tracker for visual tracking that copes with abrupt mo-
tion efficiently. The proposed SwATrack optimised the
search for the optimal distribution without making as-
sumptions or need to learn the motion model before-
hand. In addition, we introduced an adaptive mecha-
nism that detects and responds to changes in the search
environment to allow on the fly tuning of the param-
eters for a more accurate and effective tracking. Ex-
perimental results show that the proposed algorithm
improves the accuracy of tracking while significantly
reduces the computational overheads, since it requires
less than 20% of the samples used by PF. In future, we
would like to further investigate the robustness of the
proposed method as well as its behaviour change with
the different parameter settings and sampling strategy.
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