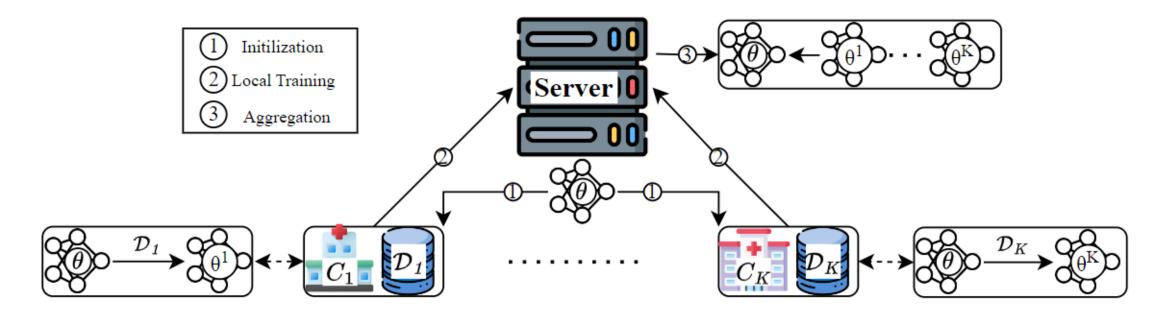


Maverick: *Collaboration-free* Federated Unlearning for Medical Privacy

Win Kent Ong, Chee Seng Chan

Universiti Malaya, Malaysia

Federated Learning

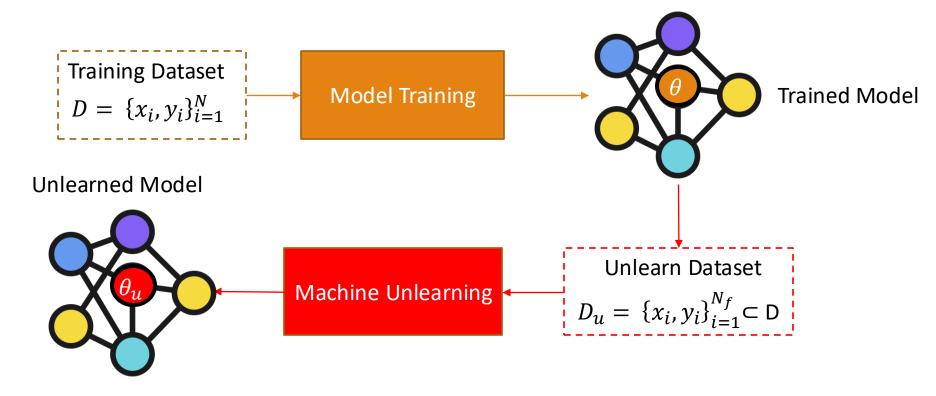


Machine Learning algorithm enables multiple parties to collaboratively train a model

- Without sharing private data, only sharing trained weights
- Better data privacy protection, reducing the risk of privacy leakage

Machine Unlearning

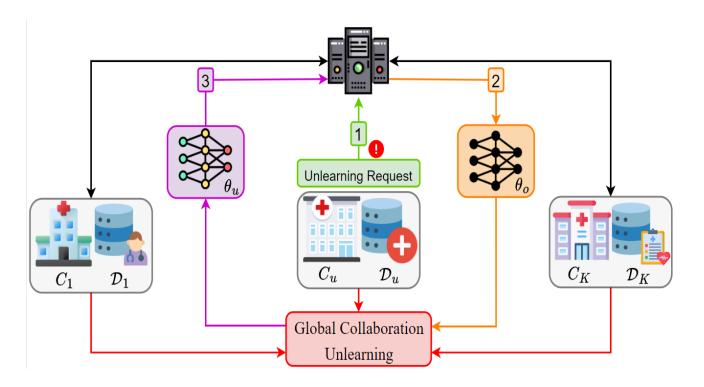
 Remove the influence of a subset of its training dataset from the trained neural network without retraining.



Machine Unlearning

- Privacy Regulation Laws
 - California Consumer Privacy Act (CCPA)
 - General Data Protection Regulation (GDPR)
 - Consumer Privacy Protection Act (CPPA)
 - Secure the right to be forgotten of data provider
- Security and Privacy Protection
 - Prevents *leaking sensitive or private information* that was unintentionally memorized during training (e.g., passwords, medical details).
- Error Correction
 - To remove mislabeled samples, or corrupted records
 - Allows selective removal of *biased or unfair features* so that the model's predictions become more equitable.

Motivation



Existing Federated Unlearning framework:

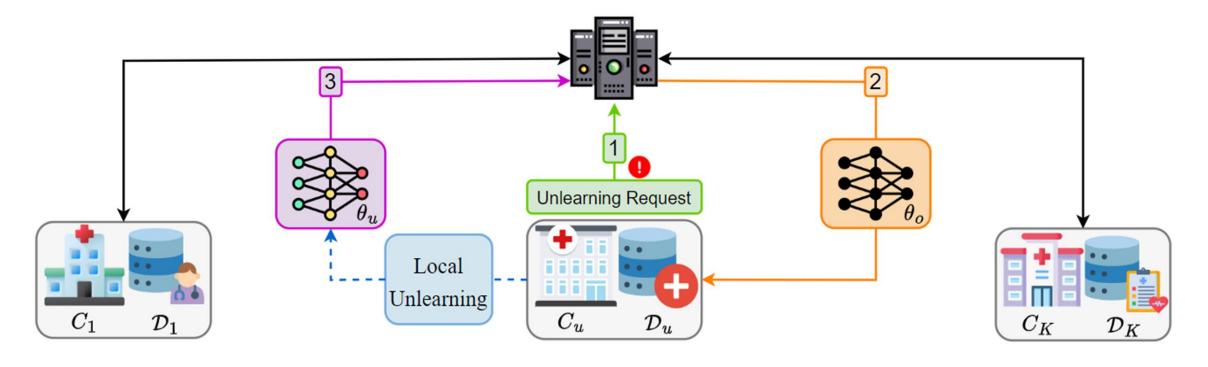
- 1. Require global client collaboration.
- 2. Increasing privacy risks
- 3. High computational burden.
- 4. Lack of a unified unlearning solution that can works across sample, class and client unlearning.

Objectives

To develop a *Federated Unlearning* algorithm for medical AI that:

- 1. Works without global client collaboration
- 2. Preserves privacy
- 3. Improves efficiency

Proposed Method - Maverick



Enables *local unlearning* at the target client *without requiring collaboration from other clients*, ensuring privacy, effectiveness and efficiency.

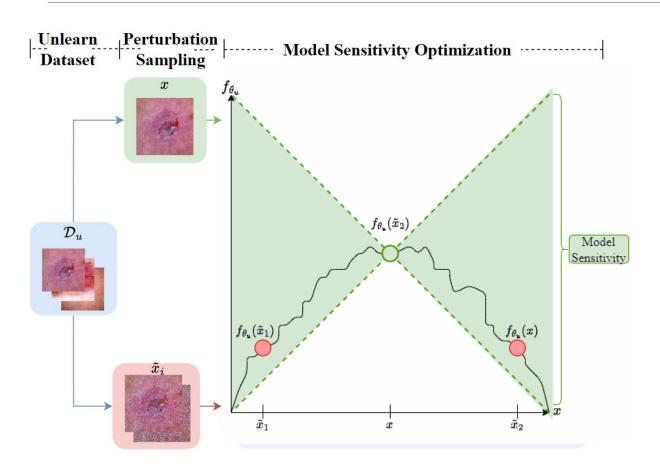
Model Sensitivity

The model sensitivity **s** of the model f_{θ} with respect to the sample **x** is defined as:

Model sensitivity,
$$\mathbf{s} = \frac{\|f(x) - f(\bar{x})\|}{\|(x) - (\bar{x})\|} = \frac{\|f(x) - f(x + \delta)\|}{\|(x) - (x + \delta)\|} = \frac{\|f(x) - f(x + \delta)\|}{\|\delta\|}$$

- Quantifies the rate of change in the model's output relative to input perturbations.
- A smaller value of ${\bf s}$ indicates that f_{θ} exhibits minimal memorization of sample ${\bf x}$.
- Averages output variation over perturbations δ , eliminating dependence on the entire dataset.

Local Unlearning



1. *Perturbation Sampling*: Add Gaussian noise to input samples

$$\tilde{x} = x + \delta$$
, where $\delta \sim \mathcal{N}(0, \sigma^2)$

2. *Model Sensitivity Approximation*: Monte Carlo sensitivity estimation.

$$\mathbb{E}_{\delta} \frac{\left\| f_{\theta_o}(x) - f_{\theta_o}(\tilde{x}) \right\|_2}{\|x - \tilde{x}\|_2} \sim \frac{1}{N} \sum_{i=1}^{N} \frac{\left\| f_{\theta_o}(x) - f_{\theta_o}(\tilde{x}_i) \right\|_2}{\|\delta_i\|_2}$$

3. *Local Optimization*: Reduce model's output response to the target data.

$$\theta_u = argmin\mathbb{E}_{(x,y)\in D_u} \frac{1}{N} \sum_{i=1}^{N} \frac{\|f_{\theta_o}(x) - f_{\theta_o}(\tilde{x}_i)\|_2}{\|\delta_i\|_2}$$

Experimental Setup

Federated Learning Simulation

- Horizontal FL setup with K = 10 clients
- IID setting: each client receives **10% of the dataset**

Unlearning Scenarios

- Sample unlearning: 40% of a client's data removed using backdoor-based techniques
- Class unlearning: Class 1 removed from the client's dataset
- Client unlearning: Entire client dataset removed

Model & Medical Datasets

- Datasets:
 - 1. Colorectal Cancer Histology Slides (Path)
 - 2. Pigmented Skin Lesions (Derma)
 - 3. Blood Cells (Blood)
- Backbone: ResNet18

Baselines

Baseline

Original model before unlearning.

Retrain

• Model training without the presence of unlearn feature.

Fine-tune (FT)

Fine-tuning baseline model with the retain dataset.

FedCDP

 Class unlearning via Term Frequency Inverse Document Frequency (TF-IDF) guided channel pruning.

FedRecovery

Sample and client unlearning visa client gradient submission.

Metrics

Fidelity

 \triangleright Accuracy of retain dataset D_r

Effectiveness

 \triangleright Accuracy of unlearn dataset D_u

Privacy

➤ Membership inference attack (MIA)

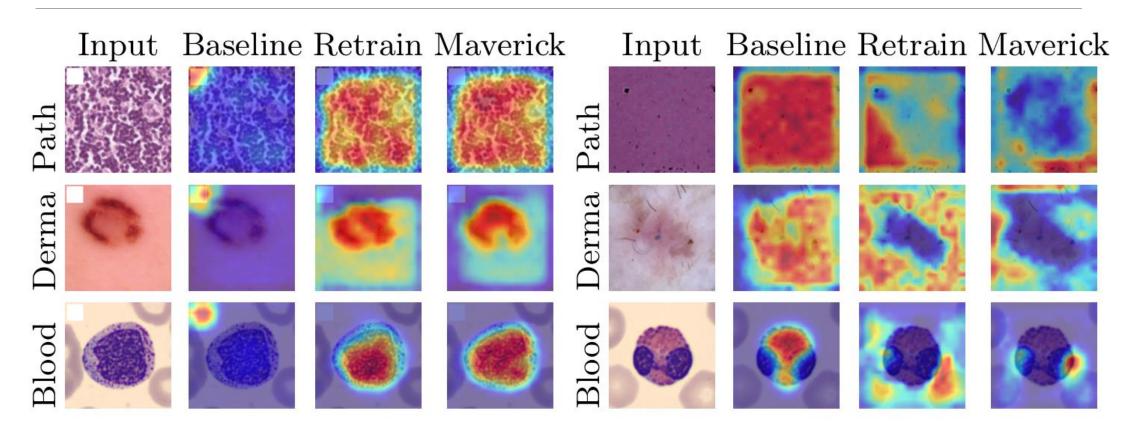
Efficiency

> Runtime in seconds

Effectiveness and Utility

Scenarios	Datasets	Metrics	Accuracy (%)					
			Baseline	Retrain	FT	FedCDP	FedRecovery	Maverick
Sample	Path	D_r	91.37	92.50	93.04	70.19	90.14	89.43
		D_u	90.48	0.00	46.13	22.61	2.35	0.71
		MIA	92.51	8.69	55.49	38.05	13.43	10.04
Class	Derma	D_r	82.52	80.39	81.38	79.31	55.51	79.18
		D_u	80.88	0.00	53.69	0.51	31.40	0.18
		MIA	90.62	2.60	40.44	5.17	34.16	0.49
Client	Blood	D_r	91.21	91.90	93.38	79.58	89.54	88.33
		D_u	92.83	0.00	43.38	25.29	1.95	0.53
		MIA	96.71	5.78	52.57	39.85	10.95	6.73

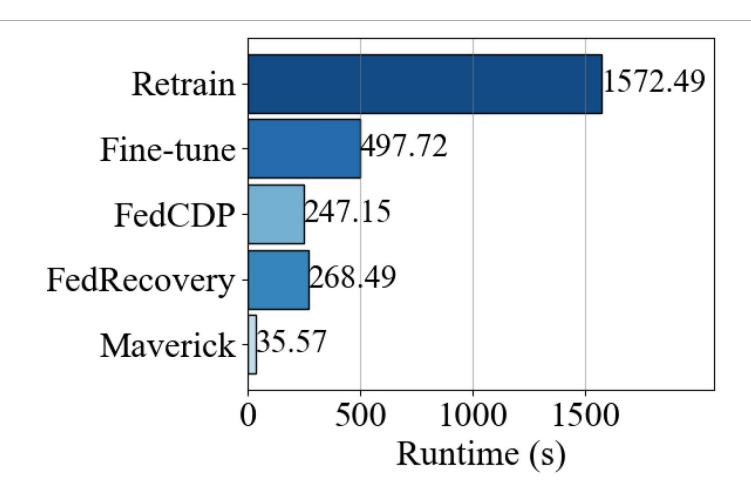
Attention Map



(a) Sample unlearning.

(b) Class unlearning.

Time Efficiency



Conclusion

- Maverick is the first collaboration-free federated unlearning method for medical AI.
- Enables local unlearning without disturbing other clients.
- Demonstrates strong results in privacy, efficiency, and fidelity.
- Well-suited for real-world healthcare and privacy-critical domains.

Thank you for listening!

