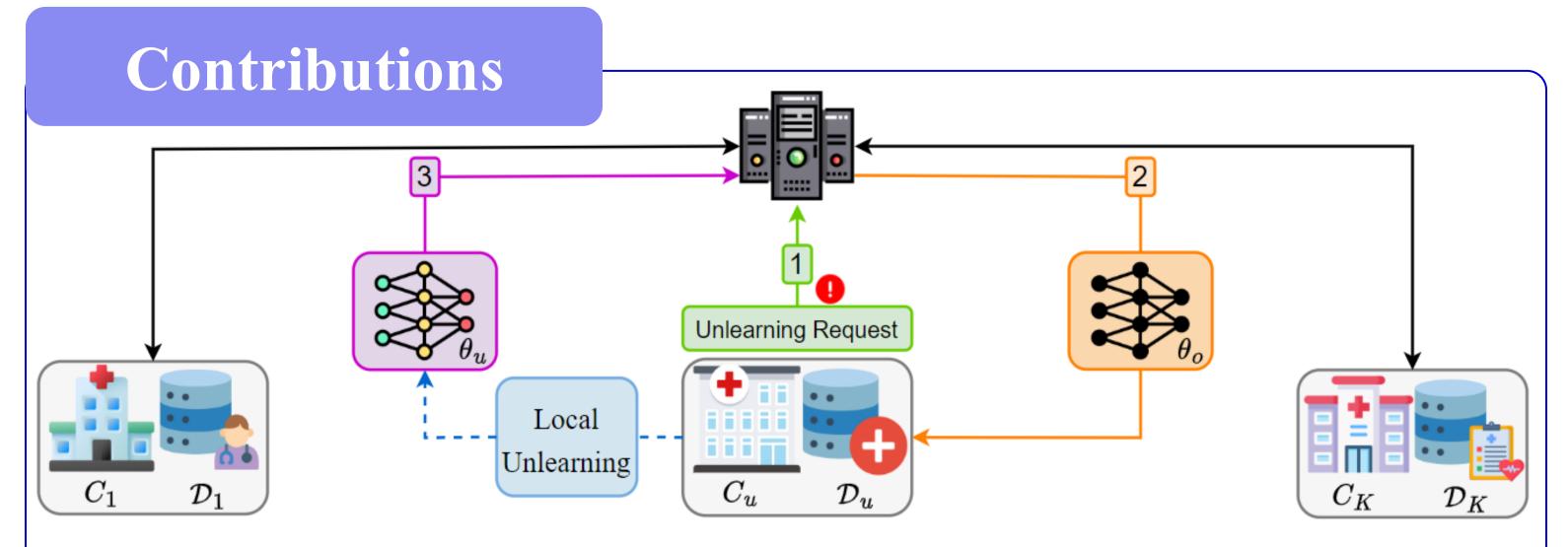


# Maverick: Collaboration-free Federated Unlearning for Medical Privacy



Win Kent Ong and Chee Seng Chan

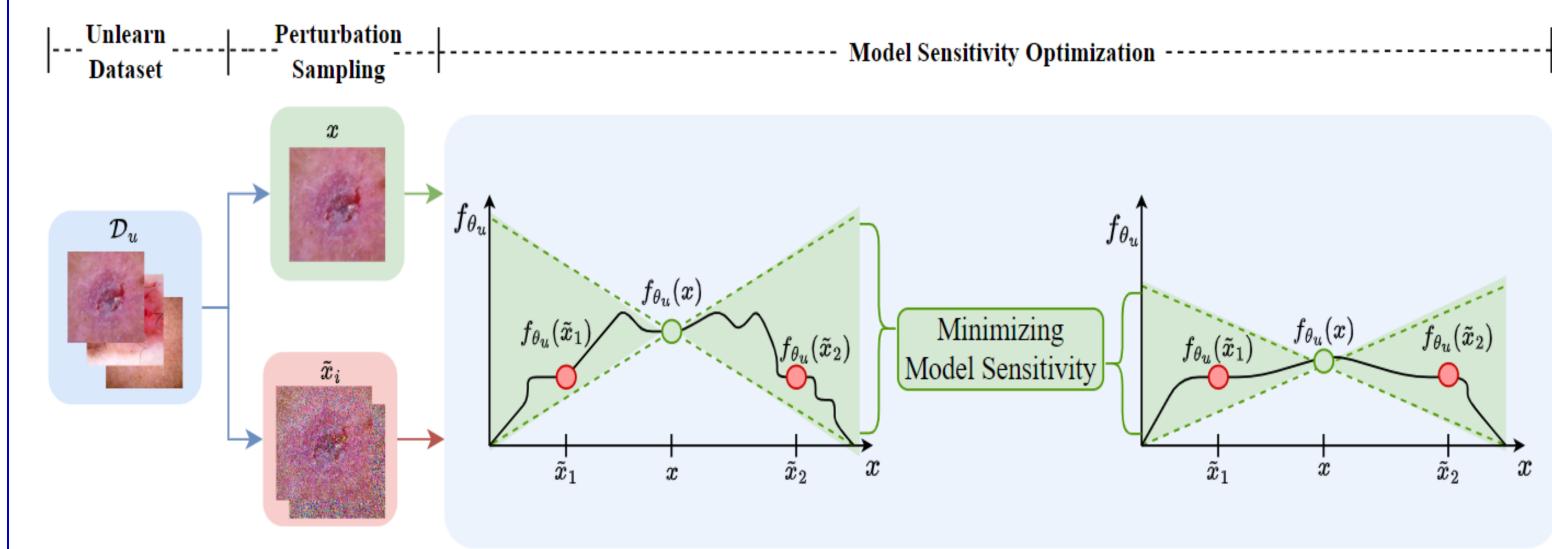
Universiti Malaya, Malaysia


### Introduction

- Federated Learning (FL) enables collaborative model training across medical institutions without sharing raw data, preserving patient privacy.
- Federated Unlearning (FU) enables the removal of *sensitive* data from models, supporting the "*right to be forgotten*" established under Article 17 of the GDPR.
- As a result, FU strengthens privacy, supports legal compliance, and builds trust in medical AI.

### Motivation

### Limitations of existing FU:


- i. Require global client collaboration
- ii. Increasing privacy risks
- iii. High computational burden.
- iv. Lack of a unified unlearning solution that can works across *sample*, *class* and *client* unlearning.



- . Collaboration-Free FU Framework
  - Local unlearning without needing collaboration from other clients.
- 2. Model Sensitivity Minimization
  - Introduces a Lipschitz-based metric to reduce memorization.
- 3. Theoretical & Empirical Validation
  Validated on medical datasets for sample, class, and client unlearning.

### Proposed Method

Maverick enables local unlearning at the target client without requiring collaboration from other, ensuring privacy and efficiency.



- 1. **Perturbation Sampling**: Add Gaussian noise to input samples  $\tilde{x} = x + \delta$ , where  $\delta \sim \mathcal{N}(0, \sigma^2)$
- 2. **Model Sensitivity Approximation:** Monte Carlo sensitivity estimation.  $||f_0(x) f_0(\tilde{x})|| \le ||f_0(x) f_0(\tilde{x})|| \le ||f_0(x) f_0(\tilde{x})||$

$$\mathbb{E}_{\delta} \frac{\|f_{\theta_o}(x) - f_{\theta_o}(\tilde{x})\|_{2}}{\|x - \tilde{x}\|_{2}} \sim \frac{1}{N} \sum_{i=1}^{N} \frac{\|f_{\theta_o}(x) - f_{\theta_o}(\tilde{x}_i)\|_{2}}{\|\delta_i\|_{2}}$$

3. Local Optimization: Reduce model's output response to the target data.

$$\theta_{u} = argmin\mathbb{E}_{(x,y)\in D_{u}} \frac{1}{N} \sum_{i=1}^{N} \frac{\|f_{\theta_{o}}(x) - f_{\theta_{o}}(\tilde{x}_{i})\|_{2}}{\|\delta_{i}\|_{2}}$$

### **Scenarios Definition**

- i. Sample Unlearning Removes <u>specific patient records</u> (e.g., one patient's scan) when an individual withdraws consent.
- ii. Class Unlearning Removes <u>all data from an entire medical institution</u> (e.g., a hospital exits the collaboration).
- iii. Client Unlearning Eliminates <u>a specific data class</u> (e.g., all CT scans of a certain disease) from the model.

# Experiments

| Scenarios | Datasets | Metrics | Accuracy (%) |         |       |               |             |          |
|-----------|----------|---------|--------------|---------|-------|---------------|-------------|----------|
|           |          |         | Baseline     | Retrain | FT    | <b>FedCDP</b> | FedRecovery | Maverick |
| Sample    | Path     | $D_r$   | 91.37        | 92.50   | 93.04 | 70.19         | 90.14       | 89.43    |
|           |          | $D_u$   | 90.48        | 0.00    | 46.13 | 22.61         | 2.35        | 0.71     |
|           |          | MIA     | 92.51        | 8.69    | 55.49 | 38.05         | 13.43       | 10.04    |
| Class     | Derma    | $D_r$   | 82.52        | 80.39   | 81.38 | 79.31         | 55.51       | 79.18    |
|           |          | $D_u$   | 80.88        | 0.00    | 53.69 | 0.51          | 31.40       | 0.18     |
|           |          | MIA     | 90.62        | 2.60    | 40.44 | 5.17          | 34.16       | 0.49     |
| Client    | Blood    | $D_r$   | 91.21        | 91.90   | 93.38 | 79.58         | 89.54       | 88.33    |
|           |          | $D_u$   | 92.83        | 0.00    | 43.38 | 25.29         | 1.95        | 0.53     |
|           |          | MIA     | 96.71        | 5.78    | 52.57 | 39.85         | 10.95       | 6.73     |



# Retrain - 497.72 Fine-tune - 497.72 FedCDP - 247.15 FedRecovery - 268.49 Maverick - 35.57 0 500 1000 1500 Runtime (s)

## Qualitative Results

| Scenarios | Input | Baseline | Retrain | Maverick |
|-----------|-------|----------|---------|----------|
| Sample    |       |          |         |          |
| Class     |       |          |         |          |

### Conclusion

Time Efficiency

- Maverick is the first *collaboration-free* federated unlearning method for medical AI.
- Enables local unlearning without disturbing other clients.
- Demonstrates strong results in privacy, efficiency, and fidelity.
- Well-suited for real-world healthcare and privacy-critical domains.