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to motion continuity and smoothness. We address this problem by casting tracking as an
optimisation problem and propose a novel abrupt motion tracker based on swarm
intelligence - the SwATrack. Unlike existing swarm-based filtering methods, we first of
all introduce an optimised swarm-based sampling strategy for a tradeoff between the
. . exploration and exploitation of the state space in search for the optimal proposal distribu-
Abrupt motion tracking . . .
Visual tracking tloq. Secondly, we propose Dynarmc Acceleratloq Pgrameters (DAP) that allow Qn. the fly
Particle swarm optimisation tuning of the best mean and variance of the distribution for sampling. Combining the
Computer vision two strategies within the Particle Swarm Optimisation framework represents a novel
method to address abrupt motion. To the best of our knowledge, this has never been done
before. Thirdly, we introduce a new dataset - the Malaya Abrupt Motion (MAMo) dataset
that consists of 12 videos with groundtruth. Finally, experimental on both quantitative
and qualitative results have shown the effectiveness of the proposed method in terms of
dataset unbiased, object size invariant and fast recovery in tracking the abrupt motions.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Visual tracking is one of the most important and challenging research topics in computer vision. Its importance stems
from the fact that it is pertinent to the tasks of motion based recognition, automated surveillance, video indexing,
human-computer interaction and vehicle navigation [36,37]. In general, motion estimation in a typical visual tracking
system can be formulated as a dynamic state estimation problem: x; = f(x; — 1, v — 1) and z; = h(x;, w;), where x; is the
current state, f is the state evolution function, v, is the evolution process noise, z; is the current observation, h denotes
the measurement function, and w; is the measurement noise. The task of motion estimation is usually implemented by
utilising predictors such as kalman filters [32,29,22], particle filters [11,2,18,3,4], or linear regression techniques [7]. These
predictors are commonly enhanced by assuming that motion is always governed by a Gaussian distribution based on
Brownian motion or constant velocity motion models [37,10].

While this assumption holds true to a certain degree for smooth motion, it tends to fail in the case of abrupt motion such
as inconsistent speed (e.g. the movement of ball in sport events), camera switching (tracking of subject in a camera topology)
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and low frame-rate videos, as illustrated in Fig. 1. The main reason is that the state equation cannot cope with the unex-
pected dynamic movement, e.g. sudden or sharp changes of the camera/object motion in adjacent frames. These sam-
pling-based solutions also suffer from the well-known local trap problem and particle degeneracy problem. In order to
handle these problems, one of the earliest work [16] considered tracking in low frame rate videos. Their work considers
tracking in low frame rate as abrupt motion, and proposed a cascade particle filters to solve this problem. This is then fol-
lowed by a number of sampling strategies [12-14,40,41,34,30], which are incorporated into the standard Markov Chain
Monte Carlo (MCMC) tracking framework. Their method alleviates the constant velocity motion constraint in MCMC by
improvising the sampling efficiency.

The aforementioned works have shown satisfactory results in tracking abrupt motion. However, we observed that most of
the work involved applying different sampling strategies to the Bayesian filtering framework. There is a clear trend towards
increase complexity; as methods become more complicated to cope with more difficult tracking scenarios. Often these
sophisticated methods compensate the increased in complexity by trading-off performance in some other area. For example,
the increased number of subregions for sampling to cope with the variation of abrupt motion is compensated by using a
smaller number of samples to reduce, if not maintaining, the computational cost incurred. However, are these complex and
sophisticated methods really necessary?

Recently, Particle Swarm Optimisation (PSO) [6,28,39,26,21,25], a new population based stochastic optimisation tech-
nique, has received more and more attention because of its considerable success. Unlike the independent particles in the
particle filter, the particles in PSO interact locally with one another and with their environment by using the analogy of
the cooperative aspect of social behaviours of animal swarm. For example, the flocking and schooling patterns of birds
and fish. However, the standard PSO is not able to track abrupt motion efficiently, due to swarm explosion and divergence
problems when the motion is highly abrupt [15,38,17].

In this paper, we proposed the SwATrack — Swarm intelligence-based Tracking algorithm to handle the abrupt motion.
Our contributions are firstly, in contrast to the conventional solutions that are based on the different sampling methods
in Bayesian filtering which are computationally expensive, we cast the problem of tracking as an optimisation problem
and adopted the particle swarm optimisation algorithm as the sole motion estimator. In particular, we replace the state
equation, x; = f(x, — 1, v — 1) with a novel velocity model which is estimated by the PSO. Secondly, we introduced Dynamic
Acceleration Parameters (DAP) and Exploration Factor (&) into the proposed PSO framework to avoid the swarm explosion
and divergence problems when tracking highly abrupt motion. While the standard PSO algorithm is not new, the novelty is
in combining the DAP and € in an ingenious way to handle the abrupt motion, which is worth noting. To the best of the
authors knowledge, there has yet to be published work with similar idea. Thirdly, a new abrupt motion dataset namely
as the Malaya Abrupt Motion (MAMo) dataset with ground truth is introduced. The dataset consists of 12 videos in real
and synthetic environment. Finally, experimental results and comparison with the state-of-the-art algorithms have shown
the effectiveness and robustness of the proposed method in terms of dataset unbiased, object size invariance and recovery
from error.

Fig. 1. Example of the abrupt motion in different scenarios. Top: Inconsistent speed. Middle: Camera switching. Bottom: Low frame-rate videos.
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The rest of this paper is organised as follows. In Section 2, we provide the background work in tracking abrupt motion. The
standard PSO is revisited in Section 3 and its limitations in handling abrupt motion is discussed. The proposed work is
detailed in Section 4 while experimental results and discussion are given in Sections 5 and 6, respectively. Finally, the
conclusion is drawn in Section 7.

2. Related work

While considerable research exist in relation to visual tracking, only a handful deal with abrupt motion [33,14,19,41].
Abrupt motion can be defined as situations where the object motion changes between adjacent frames with unknown pat-
terns in scenarios such as (i) partially low-frame rate, (ii) switching of camera views in a topology network or (iii) irregular
motion of the object. Therefore, conventional sampling-based solutions that assume Gaussian distribution based on Brown-
ian motion or constant velocity motion models tend to fail in this area as illustrated in Fig. 2. In this paper, the literature
review section is focused on works that handle abrupt motion only. Thus, for a complete review on general visual tracking,
we encourage readers to refer to [36,37].

In recent work, Markov Chain Monte Carlo (MCMC) was used to overcome the computational complexity in PF as the
state space increases [43]. While MCMC methods cope better in a high-dimensional state space, a common problem is
the need to have a large number of samples, especially when tracking abrupt motion. Thus, to deal with abrupt motion, there
a number of researchers who introduced modifications and refinements to the conventional MCMC. Kwon et al. in [12], inte-
grate the Wang-Landau algorithm into the MCMC tracking framework to track abrupt motion. Their method alleviates the
constant-velocity motion constraint in MCMC by improvising the sampling efficiency using the proposed annealed Wang-
Landau Monte Carlo (A-WLMC) sampling method. The A-WLMC method increases the flexibility of the proposal density
in MCMC by utilising the likelihood and density of states terms for resampling. Yet, another variation of MCMC known as
the interactive MCMC (IMCMC) was proposed | 13], where multiple basic trackers are deployed to track the motion changes
of a corresponding object. The basic trackers which comprise of different combinations of observation and motion models
are then fused into a compound tracker using the IMCMC framework. The exchange of information between these trackers
has been shown to cope with abrupt motion while retaining the number of samples used. In another advancement, a highly
adaptive MCMC (IA-MCMC) sampler [41] has been proposed. Their method further reduces the number of samples required
when tracking abrupt motion by performing a two-step sampling scheme; the preliminary sampling step discovers the
rough landscape of the proposal distribution (common when there is large motion uncertainty in abrupt motion) and the
adaptive sampling step refines the sampling space towards the promising regions found by the preliminary sampling step.
In another attempt for effective sampling of abrupt motion, [14] proposed the N-fold Wang-Landau (NFWL) tracking method
that uses the N-fold algorithm to estimate the density of states which will then be used to automatically increase or decrease
the variance of the proposal distribution. The NFWL tracking method copes with abrupt changes in both position and scale
by dividing the state space into larger number of subregions. The N-fold algorithm was introduced during sampling to cope
with the exponentially increased number of subregions.

Motivated by the meta-level question prompted in [42] on whether there is a need to have more training data or better
models for object detection, we raise similar question in this domain; will continued progress in visual tracking be driven
by the increased complexity of tracking algorithms? As indicated in the earlier section, often these sophisticated methods
compensate the increased in complexity in a certain aspect of the algorithm by reducing another aspect of it. Furthermore,
according to [10], different scenarios require different dynamic models. If motion models only work sometimes, on a particular
scenario, then how far should the increased in complexity of tracking algorithms be, in order to cope with the challenges of
real-time tracking scenarios? Should we look into less complex methods instead, since motion models only work
sometimes? Hence, we study a simple and yet effective algorithm, the SwATrack that utilise the PSO framework to effec-
tively handle the abrupt motion using the particles sharing information themselves. We cast tracking as an optimisation
problem, and hence the proposed method is dataset unbiased, invariance to object size and able to recover from error.
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Fig. 2. Known problem of sampling-based tracking such as particle filter tracking and its variation.
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Work that are considered similar to us are [15,38]. Li et al. [15] proposed a two-layers tracking framework in which PSO is
successfully combined with a level set evolution. In the first layer, PSO is used to capture the global motion of the target and
to help construct the coarse contour. In the second layer, level set evolution based on the coarse contour is carried out to
track the local deformation. However, there is a possibility that some samples will get trapped in a few strong local maxima.
Hence, the PSO method fails to track highly abrupt motions. Zhang et al. [38] proposed a swarm intelligence based particle
filter algorithm with a hierarchical importance sampling process which is guided by the swarm intelligence extracted from
the particle configuration, and thus greatly overcome the sample impoverishment problem suffered by particle filters.
Nevertheless, their method is not ideal as it is still dependent on the Gaussian approximation. In order to handle this issue,
we introduce (1) DAP - a dynamic acceleration parameter utilising the averaged velocity information of the particles; and (2)
£ - a mechanism for introducing a tradeoff between exploration and exploitation of the swarm into the PSO framework.
With this, the SwATrack is to minimise the effect of the local trapped and sample impoverishment problems, while at the
same time, is able to track highly abrupt motion and recover from tracking error.

3. Particle swarm optimisation revisit

Particle Swarm Optimisation (PSO) - a population-based stochastic optimisation technique was developed by Kennedy
and Eberhart in 1995 [6]. It was inspired by the social behaviour of a flock of birds. Briefly, let us assume a n-dimensional
search space, S ¢ R" and a swarm comprising of I particles. Each particle represents a candidate solution to the search prob-
lem and is associated to a fitness function (cost function), f : S — R. At every kth iteration, each particle is represented as

The best position encountered by the ith particle (personal best) will be denoted as {p(x;'()}i:] _____ , and the fitness value as
pBest;, = f (p(xi)). For every kth iteration, the particle with the best fitness value will be chosen as the global best and is
denoted as the index of the particle, which is denoted as f. Finally, the overall best position found by the swarm is repre-

sented as gBestf{ = f(p(x})). The PSO algorithm is shown in Algorithm 1.

Algorithm 1. Standard PSO

Initialisation, at iteration k=0
« Initialise the velocities, »(x}) at random within 1,-1].
o Evaluate the fitness value of each particle and identify their personal best pBest}; =f(p(x)).
o Identify the global best gth particle and update the global best information, gBest, = f(p(x})).
for k=1 to Kdo
fori=1toldo
Compute the new velocity according to:

Vi = [(w * U) + <C1 1% (pBestj( - x;})) + (ca +1 * (gBest, — x1)] (1)
Update the position according to:

p(Xi1) = PO + Ve )
Check for out of bound:

p(X;(H) cs (3)

Update variables, pBest}, p (pBestL) ,8.gBest., p(gBestt)

Check for Convergence

if Convergence == TRUE then
Terminate iteration

else
Continue

end if

end for
end for

In Eq. (1), the parameters w,c; and c, are positive acceleration constants used to scale the influence of the inertia,
cognitive and social components respectively; r1,r> C (0,1) are uniformly distributed random numbers to randomise the
search exploration.
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3.1. Limitations of PSO in tracking abrupt motion
As aforementioned, the traditional PSO is not able to cope with abrupt motion, due to:

Constant acceleration parameters: The parameter c; controls the influence of the cognitive component,
(c] *Tq % <pBest§< —xj;)) which represents the individual memory of particles (personal best solution). A higher value

of this parameter indicates a bias towards the cognitive component and vice versa. On the other hand, the parameter
c, controls the influence of the social component, (c; =1, * (gBest, — xi) which indicates the joint effort of all particles
to optimise a particular fitness function, f.

The main drawback of the current PSO is the lack of a reasonable mechanism to effectively handle the acceleration
parameters (w,c and r); which are often set to constant variables [5,8,31]. For example, many applications of the PSO
and its variant set these values to, ¢; = ¢, = 2.0, which gives the stochastic factor a mean of 1.0 and giving equal impor-
tance to both the cognitive and social components [6]. This limits the search space and therefore cannot cope with abrupt
motion. Therefore, it is essential to have dynamic acceleration parameters that are able to cope better with the unex-
pected dynamics in abrupt motion.

Tradeoffs in exploration and exploitation: The inertia weight,  plays an important role, directing the exploratory
behaviour of the swarms. A high value of inertia accentuates the influence of the previous velocity information and forces
the swarm to explore a wider search space; while a decreasing inertia weight reduces the influence of the previous veloc-
ity and exploit a smaller search space. Often, the inertia value that controls the influence of the previous velocity is set to
w € [0.8,1.2] [23]. Recently, decaying inertia weight, & = 0.9 — 0.4 have been proposed and tested, with the aim of
favouring global search at the start of the algorithm and local search later. While these settings have been shown to work
well in other optimisation problems, one must note that it is not applicable to tracking abrupt motion where the dynamic
change is unknown. Therefore, a solution that is able to handle the tradeoffs between the exploration and exploitation is
crucial.

4. Proposed method - SwATrack

In this section, we present our proposed SwATrack - a variant of the traditional PSO to track target with arbitrary
motion. Particularly, we will discuss how the effective combination of Dynamic Acceleration Parameters (DAP) and
Exploration Factor £ in the proposed PSO framework can alleviate the problem of swarm explosion and divergence
problem.

4.1. Dynamic Acceleration Parameters (DAP)

PSO is a population based stochastic technique. Since PSO is an iterative solution, efficient convergence is an important
issue towards a real-time abrupt motion estimation system. However, the strict threshold of the conventional PSO velocity
computation as in Eq. (4) will always lead to particles converging to a common state estimate (the global solution). One
reason is that the velocity update equation uses a decreasing inertia value which indirectly forces the exploration of
particles to decrease over the iterations. On the other hand, an increasing inertia value will lead to swarm explosion in some
scenarios.

To overcome this, we introduce DAP - a mechanism to self-tune the acceleration parameters by utilising the averaged
velocity information of the particles. We normalise the acceleration parameters so that they can be compared fairly with
respect to the estimated velocity, p(wnc; Ncy) = 1.0. The fitness function information is incorporated in the PSO
framework in order to refine the acceleration parameters dynamically, according to the quality of estimation, rather than
employing a static value. The basic idea is that when an object moves consistently in a particular direction, C — 1.0, the
inertia, w and cognitive weight, c; values are increased to allow resistance to any changes in its state of motion in the later
frames. Otherwise when C — 0, the social weight c; is increased by a step size to reduce its resistance to motion changes as
Eq. (4). The increase of the social weight allows global influence and exploration of the search space, which is relevant
when the motion of a target is dynamic. The exploitation within nearby regions is equitable when an object is moving with
consistent motion.

ci=C+m; c=Cc-m w=w+m C—1.0
Ci1=C—M; C=C+m; w=w-—m otherwise (4)
*subject to p(wnNciNcy) =1.0

The C is estimated by computing the frequency of the change in the quantised motion direction of the object;
C — 1.0 represents consistent motion with minimal change of direction, while C — O represents inconsistent or dynamic
motion.
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4.1.1. Exploration factor (&)

The normalisation of DAP to 1.0 will restrict the overall exploration of the state to a certain degree. Hence, we refine this
by introducing the exploration factor, £ which serves as a multiplying factor to increase or decrease the exploration. We
define the exploration factor, £ as the parameters that adaptively.

1. increase the exploration with high variance, and
2. increase the exploitation with low variance.

By utilising these exploitation and exploration capabilities, our method is capable of recovering from being trapped in a
common state (local optima). Thus, the proposed SwATrack copes better with both the smooth and abrupt motion. At every
kth iteration, the quality of the estimated position upon convergence (global best) is evaluated using its fitness value.
f(gBestt) — 1.0 indicates high likelihood whereas f(gBest) — 0 indicates low likelihood or no similarity between an estima-
tion and target.

When f (gBestﬁ) < Tyinr, Where Tyinr is a threshold, we know that there is low resemblance between the estimation and
target and most likely the proposal distribution may not match the actual posterior. Thus in this scenario, £ is increased
alongside the maximum number of iterations, K by an empirically determined step sizes m and n respectively. This drives
the swarm of particles to explore the region beyond the current local maxima (increase exploration). However, when an
object has left the scene, K tend to increase continuously and cause swarm explosion. Thus, we limit K c S.

& o f(gBestf) (3)

In another scenario, where f (gBestﬁ) > Twminr, € is decreased alongside K; constraining the search around the current
local maximum (exploitation). In a straightforward manner, it is always best to drive particles at its maximum velocity
to provide a reasonable bound in order to cope with the maximum motion change. However, this is not reasonable for
real-time applications as it incurs unnecessary computational cost especially when the motion is not abrupt. Thus, by
introducing the adaptive scheme to automatically adjust the exploration and exploitation behaviour of the swarm, SwA-
Track is able to cope with both the smooth and abrupt motion with reduced computational cost. Also, we observed that
since the particles in SwATrack exchange information with one another, a minimal number of particles is sufficient for
sampling.

4.2. Novel velocity model

With the introduction of DAP and &, the novel velocity model, » in our PSO framework is written as:
Vi =& [(w * Vi) + (q KT * (pBest;< - xk)) + (€ # 12 * (gBest, — XL))] (6)

where, &, is the exploration factor at iteration k, and c, r, w are the acceleration parameters with the condition
p(wnci; Ncy) = 1.0. The normalised condition applied to the acceleration allows on the fly tuning of these parameters
according to the quality of the fitness function. The fitness function used here is represented by the normalised distant
measure between the appearance model of an estimation and the object-of-interest. The fitness value of a particle, f(x}) mea-
sures how well an estimation of the object’s position matches the actual object-of-interest; where 1.0 represents the highest
similarity between an estimation and target and O represents no similarity.

At every kth iteration, each particle varies its velocity according to Eq. (6) and move its position in the search space
according to:

P(X.y) = pxi)' + ¥y (7)

Note that the motion of each particle is directed towards the promising region found by the global best, gBest, from pre-
vious iteration, k = k — 1. The proposed SwATrack algorithm is shown in Algorithm 2.

Algorithm 2. Proposed SwATrack

Initialisation, at iteration k = 0
« Initialise the velocities, »(x.) at random within [1,—1].
« Evaluate the fitness value of each particle and identify their personal best pBest} = f (p(xi)).
o Identify the global best gth particle and update the global best information, gBest, = f (p(x)).
for k=1 to K do
fori=1toldo
Compute the new velocity according to:

Vi =& [(w * V) + <c1 K Tq % (pBest;'< - x;)) + (c2 # 1 * (gBest, — X}
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where,
pwneine) =1

if f(gBest}) < Tyjinr then
E=E+nK=K+n

else
E=E-nK=K-n
end if
if C — 1 then
Cl=C+MeC=C-Mmw=w+m
else
Cil=Ci—MC=C+mMw=w-—m
end if

Update the position according to:
P(Xier1) = P + i (8)
Check for out of bound:

p (X;lwl ) cs (9)

Update variables, pBest}, p (pBestL) g, gBest,, p(gBest?)
Check for Convergence

if Convergence == TRUE then
Terminate iteration

else
Continue

end if

end for
end for

5. Experimental results and discussion

In this section, we verify the feasibility and robustness of our proposed method in handling abrupt motion using a
machine with a configuration of Intel core-i7, 2. 1 GHz with 8 GB RAM. The proposed SwATrack was implemented with
C++ and OpenCV library.

5.1. Experimental settings

We assumed that the object-of-interest is known and hence manually initialise the 2D position of the target in the first
frame. Automatic initialisation of target is a challenging research topic itself, and thus is not the in the scope of this study.
The object is represented by its appearance model, which comprises HSV histogram with uniform binning; 32 bins. The nor-
malised Bhattacharyya distant measure is used as the fitness value (cost function) to measure the quality of the estimation;
where 1 represents the highest similarity between an estimation and target and 0 represents no similarity. Here, the initial
values for SwATrack are £ = 25, = 0.4,¢; = 0.3,¢c;, = 0.3,K = 30,1 = 15 respectively. These values are set empirically and
are not as critical; the adaptive mechanism in the proposed method allows adjustment of these parameters according to the
quality of the observation model.

We compare the state-of-the-art results of PSO, PF [35,20], BDM [33], FragTrack [1], A-WLMC [12] and CT [39], respec-
tively in terms of both the detection accuracy (%) and processing time (milliseconds per frame). In all experiments, the
parameters of the state-of-the-art algorithms are fine-tuned accordingly (to the best understanding of the authors) for fair
comparison. We reimplemented the standard PSO and PF [35,20] methods with C++ and OpenCV library, while the rest have
been shared by the respective authors. Only the BDM tracker in[33] was implemented using the Matlab Image Processing
Toolbox while the others are in C++ and OpenCV library.
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5.2. Dataset

The proposed SwATrack was tested with our newly introduced abrupt motion dataset - namely the Malaya Abrupt
Motion (MAMo) dataset. This dataset comprises 12 videos as illustrated in Fig. 3 and Table 1. These sequences are arranged
according to the different challenging scenarios as described in the following:

(a) Rapid motion of small object: There are 5 video sequences in this scenario to test the effectiveness of the proposed
method in terms of tracking small object (e.g. table tennis ball) that exhibits fast motion. TableT, is the SIF Table Tennis
sequence - a widely used dataset in the area of computer vision, especially for evaluation of detection and tracking meth-
ods [33]. This sequence has complex, highly textured background and exhibit camera movement with some occlusion
between the ball and the player’s arm. TableT, is a sample training video from the ITTF video library which is created
to expose players, coaches and umpires to issues related to service action. Although this sequence is positioned to provide
the umpire’s point of view of a service, it is very challenging as the size of the tennis ball is very small; about 8x8 pixels to
15x15 pixels for an image resolution of 352 x 240. The video comprises of 90 frames including 10 frames in which severe
occlusion happens, where the ball is hidden by the player’s arm. TableT; is a match obtained from a publicly available
source. In this sequence, the tennis ball is relatively large as it features a close-up view of the player. However, there
are several frames where the ball appears to be blurred due to the low frame rate and abrupt motion of the tennis ball.
TableT, and TableTs were captured at a higher frame rate, thus the spatial displacement of the ball from one frame to
another appears to be smaller (less abrupt) and the ball is clearer. This is to test the ability of proposed method to handle
normal visual tracking scenario. Since the ground truth for these data were not provided, we manually labelled the
ground truth of nth object in each sequence. The ground truth is described as bounding box information, X"(x",y",w",h"
= positions in the x-dimension, y-dimension, width, height).

(b) Switching camera: In general, the sampling-based methods often assume a large variance in the proposal density to
cope with abrupt motion. However, a large variance tends to decrease the tracking accuracy when tracking smooth
motion. Thus, we include the scenario of tracking using sequences obtained from switching between multiple cameras
to evaluate the tracking methods in coping with both, the abrupt and smooth motion. This category comprises 3 videos
which includes the (Youngki, Boxing) and Malaya, sequences. The Youngki and Boxing can be found at [14], where they
consist of frames edited from changes of camera shots between multiple cameras, where the hand-over between cameras
are aimed at tracking a particular object throughout the scene. Due to the object’s handover between multiple cameras,
the object appears to have drastic change in position between adjacent frames during the switching period as well as the
scale. Otherwise, the object exhibits smooth motion as it is captured by a single camera. The Malaya, sequence is created
by combining the frames in the Boxing and Youngki sequences in an alternative manner. This combination is done to intro-
duce definite tracking error when tracking the boxer in the Boxing sequence; since the boxer is missing in the Youngki

Fig. 3. Sample shots of the newly introduced Malaya Abrupt Motion (MAMo) dataset. This collection of data comprises 12 videos which exhibit the various
challenging scenarios of abrupt motion. Top row, from left to right: TableT;,TableT, TableTs,TableT,; Second row, from left to right:
TableTs, Youngki, Boxing, Malaya, ; Bottom row, from left to right: Tennis, Malaya,, Malayas, Malaya,.
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Table 1
Summary of the Malaya Abrupt Motion (MAMo) dataset.
Category Name of the video sequences Number of videos
(a) Rapid motion of small object TableT;_s 5
(b) Switching camera Youngki, Boxing and Malaya, 3
(c) Partially low-frame rate Tennis 1
(d) Inconsistent speed Malaya,_3 2
(e) Multiple targets Malaya, 1
Total 12

sequence. The simulation of inaccurate tracking scenario is to test the robustness of tracking methods in not only tracking
abrupt motion, but recovery from inaccurate tracking.

(c) Partially low frame rate: In another example of abrupt motion, we simulate the scenario of tracking in partially low
frame rate. The Tennis video [14] comprises of downsampled data to simulate abrupt change caused by low frame rate.
The frames are downsampled from a video with more than 700 original frames, by keeping one frame in every 25 frames.
The rapid motion of the tennis player from one frame to another due to the downsampling made tracking extremely dif-
ficult. Downsampling is done to simulate abrupt motion during low-frame rates.

(d) Inconsistent speed: We obtained 2 videos from the YouTube, where each sequence comprises an object which moves
with inconsistent speed throughout the sequence. The first video, Malaya,, aims to track a synthetic ball which moves
randomly across the sequence with inconsistent speed, whilst the second video, Malaya, tracks a soccer ball which is
being juggled in a free-style manner in a moving scene with a highly textured background (grass).

(e) Multiple targets: This is to demonstrate the capability of the proposed system to track multiple targets; whilst most
of the existing solutions are focused on single target. We created a synthetic video, Malaya, that consists of two simulated
balls moving at random speed.

In general, most of the video sequences in MAMo dataset are well diversified as most of them contain a mixture of both
the smooth and abrupt motion. It is less likely for an object-of-interest to move with abrupt motion at all time, unless the
video is captured at low frame rate as exhibit by the Tennis sequence, in particular. The MAMo dataset is publicly available
along with their corresponding ground truth information.!

5.3. Quantitative results

5.3.1. Experiment 1: Detection rate

Detection rate refers to the correct number and placement of the objects in the scene. For this purpose, we denote the
ground truth of nth object as GT,, and the output from the tracking algorithms of jth object is denoted as, ¢,. We describe
the ground truth and tracker output of each nth object as bounding box information, X"(x",y",w",h" = x-position, y-position,
width, height). The coverage metric determines if a GT is being tracked, or if an ¢ is tracking accurately. In [24], it is shown
that the F-measure, F, suited this task as the measure is 1.0 when the estimate, &, overlaps perfectly with the ground truth,
GT,. Two fundamental measures known as precision and recall are used to determine the F-measure.

5.3.1.1. Recall. Recall measures how much of the GT is covered by the &, and takes value of 0 if there is no overlap and 1.0 if
the estimated position fully overlap with the actual locality of the target. Given a ground truth, GT,, and a tracking estimate,
&, the recall, R, is expressed as:

&N GT,|

q
=t 1o

5.3.1.2. Precision. Precision measures how much of the ¢ covers the GT takes value of 0 if there is no overlap and 1 if they are
fully overlapped. The precision, g, is expressed as:

&, NGT;
p:% (11)

5.3.1.3. F-measure. The F-measure, F, is expressed as:

_ 2Rup,

T (12)

n

T http://web.fsktm.um.edu.my/~cschan/project3.htm.
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Table 2
Experiment results - comparison of the detection rate (in %).
PSO PF [35,20] BDM [33] FragTrack [1] A-WLMC [12] CT [39] SwATrack

TableT1 70.1 58.4 68.3 64.9 47.2 72.3 87.8
TableT2 83.1 69.8 53.4 241 3.2 43 93.1
TableT3 58.2 52.1 67.3 55.3 8.7 24.5 74.1
TableT4 59.6 47.3 73.2 57.2 6.9 98.2 97.3
TableT5 60.3 345 64.2 9.7 5.4 36.3 72.8
Average 66.26 52.42 65.28 42.24 14.28 47.12 85.02

Coverage test: In this experiment, we employ the F-measure according to the score measurement of the known PASCAL
challenge [9]. That is, if the F, of nth object is larger than 0.5, the estimation is considered as correctly tracked in the
frame. Tables 2 and 3 demonstrates the detection accuracy of the benchmarked tracking algorithms for all 8 test
sequences. Overall, the experimental results show that the average tracking accuracy of the proposed method surpasses
most of the state-of-the art tracking methods with an average detection accuracy of 91.39%. For all 6 test sequences
(TableT,, TableT,, TableTs, Youngki and Tennis), the SwATrack generates the best tracking results amongst the rest and
ranked second best for sequence TableT, and Boxing, respectively.

Methods that are not built based on sophisticated motion model such as the FragTrack [1] performs poorly, overall with
an average accuracy of 37.19%. Their method, which employs a refined appearance model that adapts to the changes of
the object, copes well with partial occlusion. However, it is still dependent on the search radius and thus fails when track-
ing abrupt motion, where the object tends to be outside the search window. PF on the other hand, achieves a detection
accuracy of 85.6%. This is expected, since the PF algorithm is constrained to a fixed Gaussian motion model. Once PF has
lost track of the object, it has the tendency to continue searching for the object in the wrong region; leading to error prop-
agation and inability to recover from incorrect tracking such as shown in Fig. 4(a). Fig. 4(a) demonstrates sample shots of
scenarios of abrupt motion, where the PF tracker exhibits the state of being trapped in local optima. At frame 449-451,
the PF tracker continues to locate the object within the assumed Gaussian distribution when the object has in actual fact,
moved abruptly to the other corner of the image. On the other hand, the proposed SwATrack copes better with abrupt
motion and is not likely to get trapped in local optima; since the exploitation and exploration is self-adjusted based
on the fitness function, and is as shown in Fig. 4(b). Thus, as shown in Fig. 4(b), the SwATrack is able to track the object
accurately although the motion is highly abrupt. Similarly, the inability of MCMC and its variants, the A-WLMC [12] and
[IA-MCMC [41] tracking methods in handling abrupt motion is as shown in Fig. 5.

Dataset unbias: The problem of dataset bias was highlighted in [27] where the paper argue that “Is it to be expected that
when training on one dataset and testing on another there is a big drop in performance?”. Motivated by this, we replicate
similar scenario in the tracking domain, and observe that although the A-WLMC method [12] performs well in TableT,
and Youngki sequence, they do not produce consistent results when tested across the other datasets as shown in Tables
2 and 3. For example, we notice that the accuracy of A-WLMC changes drastically from one tracking scenario to another,
with an average detection accuracy for TableT video sequences is fairly low at, 14.28% while for the Tennis, Boxing and
Youngki sequences, it performs remarkably well with an average accuracy of 93.33%. This provides an indication that
the A-WLMC solution [12] maybe suffers from dataset bias problem, as it seems to only work well in their proposed data-
set, but performed poorly when it is employed on different sequences. Perhaps this is due to the motion model employed
by these tracking methods that works well only on certain scenarios, alluding to the notion in [10] that different motion
requires different motion models. This is indeed not the case for our proposed SwATrack. Our overall detection rates are
85.02% and 97.76%, respectively. For all sequences that exhibit different challenging conditions, e.g. rapid motion
(TableT,_s), camera switching (Youngki and Boxing), low-frame rate (Tennis), the SwATrack has shown its ability to cope
with the various scenarios of abrupt motion.

Size invariance: We further investigated the dataset bias problem and found out that there is an influence of the object
size to the detection rate. For instance, the A-WLMC algorithm [12] performs poorly for sequences in which the resolution
of the object-of-interest is relatively small, such as in the TableT video sequences and performs surprisingly well when the
object is large such as in the Youngki, Boxing and Tennis sequences. This indicates the need to have better representation of
the object for a more accurate acceptance and rejection of estimations in the MCMC algorithm.

Table 3
Experiment results — comparison of the detection rate (in %).
PSO PF [35,20] FragTrack [1] A-WLMC [12] SwATrack
Tennis 87.3 67.3 20.6 95.1 98.3
Youngki 87.1 47.2 27.5 86.8 98.7
Boxing 824 16.3 483 98.1 96.3

Average 85.6 43.6 3213 93.33 97.76
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(b) Sample detections from SwATrack tracking.

Fig. 4. Sample output to demonstrate the incorrect tracking state, which is caused by trapped in local optima. The aim of this sequence is to track the person
in dark skin and purple short. From Frame 449-451 (a), PF lost track of the object due to sampling from incorrect distribution during abrupt motion. Thus, it
can be observed that PF continues to track the object inaccurately once it has lost track of the object. On the other hand, the results in (b) demonstrate the
capability of the SwATrack tracker in dealing with the non-linear and non-Gaussian motion of the object (Best view in colour). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

5.3.2. Experiment 2: Computational cost

Fig. 6 demonstrates the comparison results between the proposed method and the state-of-the-art tracking solutions in
terms of time complexity. It is observed that the SwATrack algorithm requires the least processing time with an average of
63 ms per frame. On the contrary, the MCMC-based solutions which include the A-WLMC [12] and PF [35,20] require higher
processing time. This is likely due to the inherent correlation between the MCMC samplers which is known to suffer from
slow convergence when an object has not been tracked accurately. In our experiments, we notice that in scenarios where the
MCMC requires high processing time, the accuracy of the MCMC is minimal. The increase in computational cost is due to the
increase of search space when the observation model is unlikely representing the object. Note that the optimal number of
samples deployed in the PF and MCMC throughout the sequences has been selected empirically; where it ranges from 150 to
1000 particles in PF, 600 to 1000 particles in MCMC with 600 iterations while the SwATrack uses 10-50 particles (15x in
reduction) with 5-70 iterations. Intuitively, an increase in the number of samples would lead to an increase in computational
cost as each particle would need to be evaluated against the appearance observation; explaining the minimal processing
time required by the proposed SwATrack.

As shown in Tables 2 and 3, in which the SwATrack detection rate is ranked second, we observe that although the CT [39]
and A-WLMC [12] achieved better accuracy, their average processing time are threefold as compared to the SwATrack. This is
due to the need to increase the subregions for sampling when the state space increases in the A-WLMC algorithm [12]. On
the contrary, our method adaptively increases and decreases its proposal variance for a more effective use of samples. Thus
the processing time required is much lower as compared to the other methods. The advantage of the dynamic mechanism is
reflected when comparing the processing time of SwATrack to standard PSO (average of 195.20 ms per frame); where the
processing time of PSO is three times greater than that of the SwATrack. In summary, the experimental results demonstrate
the capability of the proposed system to cope with the variety of scenarios which exhibit highly abrupt motion. The adap-
tation of a stochastic optimisation method into tracking abrupt motion has been observed to incur a slight increase in the
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(d) Sample detections of IA-MCMC.

Fig. 5. A comparison between PF, SwATrack, A-WLMC [14] and IA-MCMC [41]. It is observed that the SwATrack tracking gives a more accurate fit of the
object’s locality.

processing cost, yet at the same time is able to have fair tracking accuracy as compared to the more sophisticated methods.
Thus, the preliminary results at this stage, gives a promising indication that sophisticated tracking methods may not be nec-
essary after all.

5.4. Qualitative results

5.4.1. Partially low frame rate

The sequence aims to track a tennis player in a low-frame rate video, which has been downsampled from a 700 frames
sequence by keeping one frame in every 20 frames. Here, the object (player) exhibits frequent abrupt changes which violate
the smooth motion and constant velocity assumptions. Thus, motion that is governed by Gaussian distribution based on the
Brownian or constant-velocity motion models will not work in this case. Fig. 5 shows sample shots to compare the perfor-
mance between the PF tracking (500 samples), A-WLMC (600 samples) [14], IA-MCMC (300 samples) [41] and SwATrack (50
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Fig. 6. Time Complexity. This figure illustrates the comparison in terms of processing time (milliseconds per frame) between the proposed SwATrack,
standard PSO, PF, BDM, FragTrack, A-WLMC [12] and CT.

samples). It is observed that the tracking accuracy of SwATrack is better than PF and A-WLMC [14] even by using fewer sam-
ples. While the performance of SwATrack is comparable to IA-MCMC [41], SwATrack requires fewer samples and thus
requires less processing requirement. These results further validated that the proposed SwATrack is able to track moving
object accurately and effectively, regardless of the variety of change in the object’s motion.

5.4.2. Local minimum problem

In this experiment, we aim to test the capability of SwATrack to recover from incorrect tracking. This experiment would in
particular, evaluate the efficacy of the proposed DAP and £ in handling abrupt motion. Fig. 7 shows the result for Youngki and
Boxing sequences, which exhibits abrupt motion in a camera switching scenario. Due to the object’s handover between mul-
tiple cameras, the object appears to have drastic change in position between adjacent frames during the switching period as
well as the scale. Otherwise, the object exhibits smooth motion as it is captured by a single camera. The switching happens
repeatedly when an object moves out of a particular camera view, into the field of view of another camera. The assortment of
both smooth and abrupt motion would test the capability of the proposed DAP in increasing its exploitation during smooth
motion and increasing its exploration during abrupt motion. In Fig. 7(a), it is observed that during the switch from frame 247

(b) Sample of SwATrack on Youngki sequence.

Fig. 7. Sample outputs to demonstrate the flexibility of the proposed SwATrack to recover from incorrect tracking. It can be noticed that the SwATrack only
requires minimal frames (1-2 frames) to escape from local optima and achieve global maximum.
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and 248, the SwATrack appears to have inaccurate tracking of the object; as the estimated position which is highlighted by
the ellipse does not overlap accurately with the object. However, due to the flexibility of the proposed DAP and £ which
allows self-adjustment of the exploitation and exploration of the swarm based on the fitness function, the SwATrack algo-
rithm is able to recover from the inaccurate tracking within minimal number of frames. Similar behaviour is observed in the
Youngki sequence which further validated our notion.

Nonetheless, we simulated another challenging scenario - the Malaya, in which incorrect tracking is most likely to
happen by sampling frames from 2 different datasets as shown in Fig. 8(a). The frames in the Boxing sequence are combined
in an alternative manner with the frames from the Youngki sequence. In this combined sequence, the object-of-interest
which is highlighted in the ellipse in Frame 1 of in Fig. 8(a) tend to disappear from one frame and re-appear in the
subsequent frame interchangeably. From the qualitative results shown in Fig. 8(b), we observe that the A-WLMC tracking
[14] is not robust and does not cope well with inaccurate tracking. When the object-of-interest disappear from the scene
(i.e. Frame 77), the A-WLMC [12] gives an erroneous estimation of the object. In the subsequent frame, where the object
re-appears, the A-WLMC [12] has difficulty recovering from its tracking such as shown in Frame 78 where the estimation
does not fit the actual position of the object accurately. In the subsequent frames, the A-WLMC [12] tend to continuously
missed tracked of the object. Although the sampling efficiency in the A-WLMC [12] adopts a more efficient proposal
distribution as compared to the standard PF, it is still subjected to a certain degree of trapped in local optima. Furthermore,
the A-WLMC [12] utilizes the information of historical samples for intensive adaptation, thus requiring more frames
information to recover from inaccurate tracking. The proposed SwATrack on the other hand, is observed to work well in
this Malaya, video sequence, where minimal frame is required to recover from erroneous tracking. As shown in Fig. 8(c),
the SwATrack is able to track the object accurately when the object appears or re-appears in the scene (as shown in the
even frame number). This is made possible due to the information exchange and cooperation between particles in a swarm
that provide a way to escape the local optima and reach the global maximum; leading to and optimised proposal
distribution.

5.4.3. Swarm explosion problem

In the conventional PSO algorithm, the lack of a mechanism to control the acceleration parameters and the dependency
on randomness in the system fosters the danger of swarm explosion and divergence. When swarm explosion or divergence
happens, the velocities and positions of each particle are steered towards infinity and thus, preventing convergence. In the
context of our study, swarm explosion and divergence is very likely. This is due to the tendency of the swarm to increase its
exploration in order to deal with the abrupt change in an object locality. Thus, in this combination sequences (similar
sequence as shown in Fig. 8) where the boxer disappears and reappears in the scene from one frame to another, we observe
that the conventional PSO fail to track the abrupt motion of the boxer accurately as shown in Fig. 9(a). When the object dis-
appears from the scene (since the boxer is missing in the Youngki sequence), the swarm tends to increase its exploration and
is most likely to steer towards infinity; explosion happens. If this happens, the swarm lose track of the object and is most
likely to continue searching from an inaccurate distribution leading to continuous inaccurate tracking of the object. How-
ever, in the proposed SwATrack, recovery from incorrect tracking is made possible by the Dynamic Acceleration Parameters

Frame 1

(a) Sample shots of the dataset that is obtained by combining frames from two different sequences. The object enclosed
in the ellipse is the object to be tracked.

(b) Sample detections by the A- WLMC tracking. A- WLMC tend to tracked the object inaccurately once it has lost or missed tracked of the
object as shown from Frame 79 onwards.

Frame 76 . : . rame. " i : B Frame 80

(c) Sample detections by the SWATrack tracking. In Frame 77, since the object- of-mterest does not appear in the frame inaccurate trackmg
happens. However, the SwATrack is able to recover its tracking at the following frame, Frame 78.

Fig. 8. Sample outputs to demonstrate the capability to recover from incorrect tracking.
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(b) Sample detections by the SwATrack tracking. In Frame 103, since the object-of-interest does not appear in the frame, inaccurate tracking
happens. However, the SwATrack is able to recover its tracking at the following frame, Frame 104.

Fig. 9. Sample outputs to demonstrate the inaccurate tracking in conventional PSO due to swarm explosion, and the capability of the proposed SwATrack to
track object accurately.

(DAP) and Exploration Factor £ mechanism, which prevents the particles from steering towards infinity by expanding and
constricting the velocity of particles. See Fig. 9.

5.4.4. Invariant to object size

We further tested the proposed SwATrack, PF [35,20] and A-WLMC [14] on resized sequences of similar set of datasets to
simulate the scenario in which the object size is smaller. Thus, the initial frame size of 360x240 is reduced into half, to
180x120 pixels. From our observations, the SwATrack is the least sensitive towards the size of object-of-interest, while
the detection accuracy of the A-WLMC is reduced as the size of object gets smaller. This is due to the robustness of the
optimised sampling in SwATrack as compared to the least robust method of rejection and acceptance as proposed in the
A-WLMC. The overall detection accuracy of the proposed SwATrack remain at an average of 90% regardless of the object’s
size whereas the detection accuracy of PF and A-WLMC decrease significantly by more than 25% when the object’s size
decreases. Sample output is as shown in Fig. 10. Finally, we evaluated the proposed SwATrack on videos obtained from
Youtube (Malaya, ,); and the qualitative results are as depicted in Fig. 11. It is observed that the SwATrack is able to track
the abrupt motion of the balls efficiently, as well as the capability of the proposed system to track multiple objects; two
simulated balls moving at random. From the best of our knowledge, most of the existing solutions [14,41] are focused on
single object.

6. Discussion
6.1. Will increasing the complexity of tracking algorithms enhance better results in abrupt motion tracking?

Motivated by the meta-level question prompted in [42] on whether there is a need to have more training data or better
models for object detection, we raise similar question in the domain of this area; will continued progress in visual tracking
be driven by the increased complexity of tracking algorithms? Intuitively, an increase in the number of samples in
sampling-based tracking methods such as PF and MCMC would increase the tracking accuracy. One may also argue that
the additional computational cost incurred in the iterative nature of the proposed SwATrack and MCMC would complement
the higher number of particles required by the PF. Thus, in order to investigate if these intuitions hold true, we perform
experiments using an increasing number of samples and iterations (Sampling-based vs. Iterative-based solutions). We then
observe the behaviours of PF and SwATrack in terms of accuracy and processing time with the increase in complexity. PF
is chosen in this testing as it bears close resemblance to the proposed SwATrack algorithm in which a swarm of particles
are deployed for tracking. The experiments in this section are performed on the TableT;_s video sequences.

6.1.1. Number of particles vs. accuracy
6.1.1.1. Particle filter. In the PF algorithm, we vary the number of samples or particles (i.e. 50, 100, ..., 2000) used throughout
the sequence to determine the statistical relationship between number of samples and performance. We gauge the perfor-
mance by the detection accuracy (%) and processing time (in milliseconds per frame). The average performance across all 5
TableT video sequences is as shown in Fig. 12(a). Sample of the performance for sequence TableT; and TableT, are as shown in
Fig. 13(a).

The results demonstrate that the number of particles used in PF is correlated to the detection accuracy; where the growth
in the number of particles tends to increase the accuracy. Similarly, the average time taken also increases exponentially as
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moves abruptly, and demonstrate continuous inaccurate tracking such as shown in Frame 279-284. Note that for similar frames, the
A-WLMC tracker is able to track the object accurately when the image size is larger. Number of iterations = 600, particles = 600.

Frame 280

-

(b) Sample detections from SwATrack on reduced image size. SwATrack produces consistent tracking as compared to PF and
A-WLMC, regardless of the size of object. Number of iterations = 30, particles =20.

Fig. 10. Qualitative Results: Comparison between A-WLMC and our proposed SwATrack in terms of reduced object size.

Fig. 11. Sample of SwATrack on tracking the object(s) in Malaya,_, video sequences.

the number of particles used in PF grows. This alludes the fact that as the number of particles increases, the estimation pro-
cesses which include object representation, prediction and update also multiply. However, it is observed that PF reaches a
plateau after hitting the optimal accuracy, after which any increase in the number of particles will either have a decrease in
accuracy or no significant improvement. From Fig. 12, we can see the detection accuracy decreases after the optimal solution,
which is given when the number of particles is 600. Our findings instigate the underlying assumption that the increase of
number of particles will lead to an increase in the accuracy. Thus, we raise the question of whether complex (in this context
the complexity is proportional to the number of particles deployed) tracking methods are really necessary? Also, the best
parameter configurations may differ from one sequence to another due to the different motion behaviour portrayed by
the object in each sequence. For example, in Fig. 13(a), the optimal setting is 250 particles which produces detection
accuracy of 55% and takes 1.78 s of processing time. Meanwhile, the second sequence has a different optimal setting of
150 particles as shown in Fig. 13(b). This advocates the notion as in [10] that motion models indeed only work for sometimes.

SwATrack: Similarly, we perform the different parameter settings test on the proposed SwATrack algorithm and the
average results are demonstrated in Fig. 12(b), while Fig. 14 illustrate the results for TableT; and TableT,. In addition to
the number of particles used in PF tracking, the proposed SwATrack has an additional influencing parameter, the maximum
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Fig. 12. A comparison in terms of accuracy vs. different number of samples and accuracy vs. different number of samples and iteration.
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Fig. 13. The accuracy and performance of PF with different number of samples for sequences, TableT;_,.

number of iterations. We vary the number of particles against the number of iterations for fair evaluation. As illustrated in
the left y-axis of the chart (bottom graph), we can see that the average processing time increases as the number of iterations
increase. However, the processing time increases up to a maximum value; after which any increase in the iterations would
not make much difference in its processing time. Notice that the processing time for larger numbers of iterations (55 & 70)
tend to overlap with one another, demonstrating minimal increase in processing time as the number of iterations grows. This
is due to the optimisation capability of the proposed SwATrack to terminate its search upon convergence, regardless of the
defined number of iterations. This is particularly useful in ensuring efficient search for the optimal solution, with minimal
number of particles. As for the detection accuracy, we can see that in general the average accuracy of the proposed SwATrack
is higher than PF, with an average accuracy of 92.1% in the first sequence as shown in Fig. 14(a). The sudden decrease in accu-
racy for SwATrack tracking with 70 number of iterations as shown in Fig. 14(a) may be due to the erratic generation of ran-
dom values in C++ implementation. This behaviour is not observed in other sequences, where their detection accuracy is
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Fig. 14. The accuracy and performance of SwATrack with different number of samples and iterations for TableT; ;.
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consistent across frames. Thus far, we take an average result for each test case over 10 runs to ensure reliable results and we
believe that with a higher number of runs, we would be able to obtain unbiased results without outliers. In summary, the
results further validate our findings that the proposed SwATrack is able to achieve better accuracy as compared to PF, whilst
requiring only about 10% of the number of samples used in PF with minimal number of iterations. This is made possible by an
iterative search for the optimal proposal distribution, incorporating available observations rather than making strict assump-
tions on the motion of an object. Thus, we believe that the findings from our study create prospects for a new paradigm of
object tracking. Again, we raise the question if there is a need to make complex existing tracking methods by fusing different
models and algorithms to improve tracking efficiency? Would simple optimisation methods be sufficient?

6.1.2. Number of samples vs. processing time

6.1.2.1. Particle filter. In the PF algorithm, we vary the number of samples or particles (i.e. 50, 100, ..., 2000) used throughout
the sequence to determine the statistical relationship between number of samples and detection accuracy. The lowest value
of the parameter value is determined based on the minimal configuration to allow tracking while the highest value is set to
the maximal configuration before it reaches a plateau detection accuracy. The detection accuracy and performance of the PF
algorithm with different parameter settings are as shown in Figs. 15-19(a). The results demonstrate that the number of par-
ticles used in PF is related to the detection accuracy; where the increases in the number of particles tend to increase the
accuracy. Similarly, the average time taken also increases as the number of particles used in PF grows. This alludes the fact
that as the number of particles increase, the estimation processes which include object representation, prediction and
update also multiply. However, it is observed that PF reaches a plateau detection accuracy after hitting the optimal accuracy,
after which any increase in the number of particles will either have a decrease in accuracy or no significant improvement.
Thus, the underlying assumption that the increase of number of particles will lead to an increase in the accuracy does not
hold true. This may be due to the resampling step in most PF algorithms that is highly prone to error propagation. Also, the
best parameter configurations may differ from one sequence to another due to the different motion behaviour portrayed by
the object in each sequence. For example, in Fig. 15(a), the optimal setting is 250 number of particles which produces detec-
tion accuracy of 55% and takes 1.78 s of processing time. Note that in this set of experiments, other parameters such as the
mean and variance for the Gaussian distribution in PF is not optimal values as compared to the earlier experiment. A stan-
dard configuration of Gaussian white noise is used across frames. Thus, the results obtained may slightly differ.

6.1.2.2. SWATrack. Similarly, we perform the different parameter settings test on the proposed SwATrack algorithm and the
results are demonstrated in Figs. 15, 16, 17, 18 and 19(b). In addition to the number of particles used in PF tracking, the pro-
posed SwATrack has an additional influencing parameter, the maximum number of iterations. Thus, here we vary the num-
ber of particles against the number of iterations and obtain their detection accuracy. As illustrated in the left y-axis of the
chart (bottom graph), we can see that the average processing time increases as the number of iterations increase. However,
the processing time taken reaches a maximal value, where the different number of iterations require almost comparable
amount of time. This can be seen by the overlapping results as shown in Fig. 15-19(b), in particular. This demonstrate that
the effectiveness of the termination criteria in the proposed SwATrack. When a global solution has been found by the entire
swarm (swarm reaches convergence), the search activity terminates despite the initial setting value of the number of iter-
ations. Also, our proposed method which automatically changes the number of iterations according to the swarm search
quality allows a self-tuned setting of the maximum iteration number. As for the detection accuracy, we can see that in gen-
eral the average accuracy of the proposed SwATrack is higher than PF, with an average accuracy of 92.1% in the first sequence
as shown in Fig. 15(b). In summary, the results further validate our findings that the proposed SwATrack is able to achieve
better accuracy as compared to PF, whilst requiring only about 10% of the number of samples used in PF with minimal num-
ber of iterations.
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Fig. 15. TableT;: The accuracy and performance of PF/SwATrack with different parameter settings.
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Fig. 16. TableT,: The accuracy and performance of PF with different parameter settings.
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Fig. 17. TableTs: The accuracy and performance of PF with different parameter settings.
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Fig. 18. TableT4: The accuracy and performance of PF with different parameter settings.

6.1.3. Sampling strategy

To further evaluate the robustness of the proposed algorithm as well as to understand the behaviours of other algorithms
when tracking abrupt motion, we perform the sampling strategy test. In this test, we simulate the scenario of receiving
inputs from the sensors with a lower frame rate by downsampling the number of frames from the test sequence; assuming
the actual data are obtained at normal rate of 25 frames per second to a lower rate of 5 frames per second. We named this
new downsample TableT video sequences as the DoS — TableT and in total there are 4 video sequences. We have excluded the
TableTs for this purpose, as the object appears to be out of the scene in the early frames of this video, and thus the down-
sampled sequence will comprise minimal number of frames in which the object appears in the scene.

Fig. 20 demonstrates the detection accuracy between the proposed SwATrack and PF for all four sequences by down-
sampling each sequence to simulate the 5 frames per second scenario. Note that the detection accuracy is determined by
comparing the ground truth for the sampled frames only. However, it is observed that in general the proposed SwATrack
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Fig. 19. TableTs: The accuracy and performance of PF with different parameter settings.
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Fig. 20. The detection accuracy of SwATrack against PF during sampling for DoS — TableT;_4.

has better detection accuracy as compared to PF in both situations; with and without sampling. The average detection accu-
racy of SwATrack for the complete sequences is approximately 95.5% whereas the average for PF is approximately 62.5%.
During sampling, the average detection of accuracy of SwATrack is approximately 77.25% whereas PF is approximately
32.75%. We can see that the detection accuracy of PF drops drastically when the frame rate decreases. This is because, in
low frame rate videos, the object tends to have abrupt motion and thus, methods that assume Gaussian distribution in its
dynamic motion model such as PF fail in such cases. The changes between detection accuracy on complete and sampled
sequence is as indicated in red in Fig. 20. SwATrack on the other hand, copes better with low frame rate with an average
accuracy of more than 70% although there is a decrease in its efficiency. This is because, the proposed SwATrack algorithm
allows iterative adjustment of the exploration and exploitation of the swarm in search for the optimal motion model without
making assumptions on the object’s motion. We can thus conclude that the proposed SwATrack algorithm is able to cope
with scenarios where the frame rate is low.

7. Conclusions

In this paper, we presented a novel swarm intelligence-based tracker for visual tracking that copes with abrupt motion
efficiently. The proposed SwATrack optimised the search for the optimal distribution without making assumptions or need to
learn the motion model before-hand. In addition, we introduced an adaptive mechanism that detects and responds to
changes in the search environment to allow on the tuning of the parameters for a more accurate and effective tracking.
To the best of our knowledge, this has never been done before. A new dataset - the Malaya Abrupt Motion (MAMo) dataset
that consists of 12 videos with groundtruth is also provided. Experimental results show that the proposed algorithm
improves the accuracy of tracking while significantly reduces the computational overheads, since it requires less than
20% of the samples used by PF. In future, we would like to further investigate the robustness of the proposed method as well
as its behaviour change with the different parameter settings and sampling strategy.
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