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Abstract1 

Bandler and Kohout's sub-triangle product is 
well-known due to its ability to retrieve relations of 
elements in the sets which are not directly associated. 
In practice, the sub-triangle product is able to gener-
ate a list of inference structures that can work as in-
ference engine. In this paper, we examine this 
sub-triangle product in a medical expert system 
where lists of equations were initialized from the 
sub-triangle product as the inference structures. Two 
limitations were discovered where the former arises 
from the ignorance of non-emptiness condition, 
whereas the latter arises from the initialization of an 
inappropriate logical connectives. To rectify this 
problem, we proposed to eliminate those inference 
structures that are not performing well. With a fur-
ther study on the behaviour of well performing in-
ference structures, we first proposed a combination 
of inference structures that good for forming infer-
ence engines of medical expert systems. 

Keywords: BK sub-triangle product, fuzzy relation, in-
ference structure, logical connective. 
 

1. Introduction 
 

Relations between two indirectly associated sets can 
be studied with the relational products proposed by 
Bandler and Kohout [1]. These relational products are 
widely known as BK relational products in the literature. 
Distinct from the traditional composition of relations [2], 
BK relational products define the relations between ele-
ments within 2 indirectly associated sets as the overlap-
ping of their images in a common set.  
In term of applications, BK relational products gained 
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remarkable successful in developing inference engines 
for numerous applications, such as medical expert sys-
tems [3], information retrieval [4], path finding of au-
tonomous underwater vehicles [5], land evaluation [6] 
and etc. Among many types of fuzzy relations, Kerre [7] 
described BK relational products as "the most important 
operation on relations". There are 3 types of relational 
products defined by Bandler and Kohout, and the BK 
sub-triangle product is the most used in developing 
fuzzy inference structures. Moreover, recently Stepnicka 
and Jayaram [8] also proved that BK sub-triangle prod-
uct has its noteworthy advantages over compositional 
rule of inference [9], which is relatively popular.  

In order to develop fuzzy inference structures with BK 
sub-triangle products, appropriate logical connectives 
must be defined to combine relevant terms. Yew [10] 
and Yew and Kohout [3, 11-12] showed a typical exam-
ple of this work where a set of 23 inference structures 
based on BK sub-triangle product and its variants were 
developed. These inference structures were tested as an 
inference engine of a medical expert system, and the 
performance of each inference structures is recorded and 
compared. From here, we found out that there are two 
limitations in formulating of the inference structures 
which are not addressed. These limitations involve ini-
tializing inappropriate logical connectives for inference 
structures and ignorance of non-emptiness condition.   

In this paper, our contributions are the discovery of 
two limitations presented in the list of inference structure 
that proposed by Yew and Kohout [3, 11-12]. Besides, 
we studied the influence of additional term proposed by 
De Baets and Kerre [13]. With the understanding of the 
shortcomings and the influence of additional term, we 
rejected some of the inference structures and minimize 
the list from 19 to 4. With the combinations of these 4 
inference structures, we can form robust inference en-
gines. 

The rest of this paper is organized as follows: Section 
2 revisits the definition of BK relational products as well 
as the implementation of the sub-triangle product in [3, 
10]. We explained the limitations of their work in Sec-
tion 3. The influence of the additional term by De Baets 
and Kerre was studied in Section 4. The proposed 
method and experiment on simulated data is presented  
in Section 5. Lastly, we draw conclusion in Section 6. 
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2. Revisits the BK Relational Products 
 
A. BK relational products 

We start the discussion with a brief revision on the 
fundamental definitions of BK (crisp) relational products. 
To make the discussion more concise, we use the fol-
lowing notations for the explanation of these definitions, 
as well as the remaining of this paper. 

Set { | 1, , }iA a i m= = and set { | 1, , }iB b i n= = . 
R is defined as a relation from A to B such 
that R A B⊆ × . The abbreviation aRb shows that a is in 
relation R with b.  
Definition 1 (Domain): Domain of a relation R is a set of 
elements in A such that these elements have relation R 
with at least 1 element in B: 

    dom( ) { |  and ( )( )}R a a A b B aRb= ∈ ∃ ∈   (1) 
Definition 2 (Range): Range of a relation R is a set of 
elements in B such that these elements can be related by 
at least 1 element in A through relation R: 

    rng( ) { |  and ( )( )}R b b B a A aRb= ∈ ∃ ∈    (2) 
Definition 3 (Converse Relation): Converse relation RT is 
the reverse of relation R from B to A: 

    {( , ) | ( , )  and }TR b a b a B A aRb= ∈ ×      (3) 
Definition 4 (Afterset): Afterset aR is the images of a 
under relation R in B: 

{ |  and }aR b b B aRb= ∈          (4) 
Definition 5 (Foreset): Foreset Rb is the set of a which 
can be related to the particular b with relation R: 

{ |  and }Rb a a A aRb= ∈          (5) 
Assume that is another crisp relation S, from set B to 

set C. These relational products can be defined as fol-
low:  
Definition 6 (Sub-triangle product): Sub-triangle product 
shows all (a, c) couples for which the afterset aR is a 
subset of foreset Sc 

{( , ) | ( , )  and }R S a c a c A C aR Sc= ∈ × ⊆   (6) 
Definition 7 (Super-triangle product): Super-triangle 
product shows all (a, c) couples for which the foreset Sc 
is a subset of afterset aR: 

{( , ) | ( , )  and }R S a c a c A C Sc aR= ∈ × ⊆   (7) 
Definition 8 (Square product): Square product shows all 
(a, c) couples for which the afterset aR is exactly equal 
to the foreset Sc: 

{( , ) | ( , )  and }R S a c a c A C aR Sc◊ = ∈ × =    (8) 
As one can notice, the central thought of BK relational 

products is subsethood. Therefore, these crisp relational 
products can be developed to fuzzy relational products 
easily by introducing a fuzzy subsethood (or similarity) 
measurement. For example, the BK fuzzy sub-triangle 
product can be expressed as follow: 

 

( , ) ( )ab bcb B
R S a c R S

∈
= Λ →         (9) 

Here, →  represents fuzzy implication operators, Rab 
is the short form of membership function of R(a,b) and 
Sbc is the short form of membership function of S(b,c). 
 
B. Improvement by De Baets and Kerre 

De Baets and Kerre [13] pointed out that there is a 
blind side in the definition of BK sub-triangle product, 
i.e. an element $a$ can have relation R S with all the 
elements in C even if there is no image of a in B under 
relation R. For each BK super-triangle product and 
square product, a similar imperfection holds. Thus, De 
Baets and Kerre conclude that a lot of unwanted couples 
may be generated by the traditional BK relational prod-
ucts. 

To rectify this imperfection, De Baets and Kerre [13] 
proposed that a non-emptiness condition should be add-
ed to (6), so that: 

* {( , ) | ( , )  and }R S a c a c A C aR Sc= ∈ × ∅ ⊂ ⊆  (10) 
The superscripted * for the sub-triangle indicate a 

product. To fuzzify (10), two equivalent expressions 
were developed and each lead to a different fuzzy ex-
pression.  

The first expression is based on the Cartesian product 
of the domain of the first relation and the range of the 
second relation: 

* ( (dom( ) rng( ))R S R S R S= ∩ ×     (11) 
and this expression leads to the first set of improved 
fuzzy sub-triangle product: 

( , ) min( ( ) , , )b ab bc ab bcb B b Bb B
R S a c R S R S

∈ ∈∈
= Λ → Λ Λ  (12) 

The second expression was developed by intersecting 
the BK sub-triangle product and classical composition of 
relations \cite{Zadeh1965}:  

* ο ( ) (  )R S R S R S= ∩        (13) 
and this expression leads to the second set of improved 
fuzzy sub-triangle product: 

( , ) min( ( ) , ( , ))k ab bc ab bcb B b B
R S a c R S R Sτ

∈ ∈
= Λ → Λ  (14) 

The subscripts b and k in (12) and (14) indicate 2 dif-
ferent fuzzy expressions derived by De Baets and Kerre. 

One compared (12) and (14) to the original (9), it is 
easy to notify that the original expression was expended 
with additional term(s). We refer the original term that 
originate from Bandler and Kohout as Implication term; 
whereas the term(s) added by De Baets and Kerre [13] as 
Additional term. 
 
C. BK Sub-triangle Product in Medical Expert System 

by Yew and Kohout 
In [3, 10] Yew and Kohout acquired all the original 

and improved versions of fuzzy sub-triangle product to 
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form 3 fuzzy inference templates. With these inference 
templates, a set of 23 inference structures as illustrated 
in Figure 1 were formed and tested in a medical expert 
system. 

Practically, in the medical expert system, (9), (12) and 
(14) were developed to become Sub-BK inference tem-
plate, Sub-B inference template and Sub-K inference 
template, respectively:  
Sub-BK Inference Template: 

  2( ) ( )ac ab bcR S R S= →         (15) 
Sub-B Inference Template: 

1 2 3 4( ) ( ( ), , )b ac ab bc ab bcR S R S R S= →  (16) 
Sub-K Inference Template: 

1 2 3 4( ) ( ( ), ( ( , )))k ac ab bc ab bcR S R S R S= →  (17) 
where all the ( {1,2,3})i i =  and ( {2,3})j j =  are 
logical connectives that yet to instantiate. With checklist 
paradigm [1, 14], Yew and Kohout found that the fol-
lowing logical connectives are suitable candidates for 

i  and j : 

  

1

2

3

4

4

{min,max}
{Arithemetic mean, AndTop, AndBot}
{Arithemetic mean,OrTop,OrBot}
{OrTop}
{AndTop, AndBot}

=
=
=
=
=

 (18) 

AndTop, AndBot, OrTop and OrBot are logical con-
nectives derived from checklist paradigm and are de-
fined as follow: 

AndTop( , ) min( , )p q p q=        (19) 
AndBot( , ) max(0, 1)p q p q= + −     (20) 

OrTop( , ) max( , )p q p q=         (21)   
OrBot( , ) min(1, )p q p q= +        (22) 

Therefore, with (9) and (18), a list of 3 Sub-BK infer-
ence structures was instantiated.  

1

1BK1 ( )

BK2 AndTop( )
BK3 AndBot( )

N

ab bc
b

ab bc

ab bc

R S
N

R S
R S

=

= →

= →

= →

∑
 

There is only 1 instantiation for Sub-B inference 
structure: 

1
1

1min( ( ),max ,max )
N

ab bc ab bc
b

B R S R S
N =

= →∑  

For Sub-K inference template, a list of 19 inference 
structures as illustrated in Figure 1 was instantiated. This 
set of inference structures is the focus of discussion in 
this paper. In addition, Ł ukasiewicz and Kleene-Dienes 
implication operators that defined as follow were chosen 
as implication operators for all the inference structure. 

1
1 1

2
1 1

3
1 1

4
1 1

5

1 1m in ( ( ) , ( A n d T o p ( , ) ) )

1 1m in ( ( ) , ( A n d B o t ( , ) ) )

1 1m a x ( ( ) , ( A n d T o p ( , ) ) )

1 1m a x ( ( ) , ( A n d B o t ( , ) ) )

m

N N

a b b c a b b c
b b

N N

a b b c a b b c
b b

N N

a b b c a b b c
b b

N N

a b b c a b b c
b b

K R S R S
N N

K R S R S
N N

K R S R S
N N

K R S R S
N N

K

= =

= =

= =

= =

= →

= →

= →

= →

=

∑ ∑

∑ ∑

∑ ∑

∑ ∑

1

6
1

7
1

8
1

9

1a x ( ( ) ,O rB o t ( A n d T o p ( , ) ) )

1m a x ( ( ) ,O rB o t ( A n d B o t ( , ) ) )

1m in ( ( ) ,O rB o t ( A n d B o t ( , ) ) )

1m a x ( ( ) ,O r T o p ( A n d T o p ( , ) ) )

1m in ( (

N

a b b c a b b c
b

N

a b b c a b b c
b
N

a b b c a b b c
b

N

a b b c a b b c
b

a b b

R S R S
N

K R S R S
N

K R S R S
N

K R S R S
N

K R S
N

=

=

=

=

→

= →

= →

= →

= →

∑

∑

∑

∑

1

1 0
1

1 1
1

1 2
1

1 3

) ,O rB o t ( A n d T o p ( , ) ) )

1m in ( ( ) ,O r T o p ( A n d B o t ( , ) ) )

1m a x ( ( ) ,O r B o t ( A n d B o t ( , ) ) )

1m in ( ( ) ,O r T o p ( A n d T o p ( , ) ) )

m in ( A n d T o p ( ) , O

N

c a b b c
b

N

a b b c a b b c
b

N

a b b c a b b c
b

N

a b b c a b b c
b

i j j k

R S

K R S R S
N

K R S R S
N

K R S R S
N

K R S

=

=

=

=

= →

= →

= →

= →

∑

∑

∑

∑

1 4

1 5

1 6

1 7

r T o p ( A n d T o p ( , ) ) )

m in ( A n d T o p ( ) , O rT o p ( A n d B o t ( , ) ) )

m in ( A n d B o t ( ) , O rB o t ( A n d B o t ( , ) ) )

m in ( A n d B o t ( ) , O r B o t ( A n d T o p ( , ) ) )

m a x ( A n d T o p ( ) , O rB o t ( A n d T o p (

i j j k

i j jk i j jk

i j jk i j jk

i j jk i j jk

i j jk

R S

K R S R S

K R S R S

K R S R S

K R S

= →

= →

= →

= →

1 8

1 9

, ) ) )

m in ( A n d T o p ( ) , O rB o t ( A n d T o p ( , ) ) )

m in ( A n d T o p ( ) , O rB o t ( A n d B o t ( , ) ) )

i j j k

i j jk i j jk

i j jk i j jk

R S

K R S R S

K R S R S

= →

= →

 

Figure 1. List of Sub-K Inference Structures. 
 

-Łukasiewicz implication operator, Łp →  

Ł min(1,1 )p q p q→ = − +        (23) 
Kleene-Dienes implication operator, KDp →  

KD max(1 )p q p q→ = − +        (24) 
With this set of implication operators, each inference 

yield an interval in the range [0,1]. The upper bound of 
an inference is given by Ł→ whereas the lower bound is 
given by KDp → . 

To evaluate the inference structures, the resulted in-
tervals of inferences are considered as accepted if they 
fall into a predefined accepted threshold (e.g: higher then 
0.8 considered accepted). On the other hand, an infer-
ence is rejected if the interval fall into a predefined re-
jected threshold (e.g: lower then 0.3 considered re-
jected). 

If an inference not able to accept the true disease, the 
true acceptance rate is 0; otherwise the true acceptance 
rate is given by 1/number of accepted diseases. It is an 
instance of false rejection if the true disease is rejected.  
On the other hand, false acceptance rate is the proportion 
of the incorrect diseases being accepted. The proportion 



 International Journal of Fuzzy Systems, Vol. 13, No. 4, December 2011 240

of the incorrect diseases being rejected is true rejection 
rate. [3,10] evaluated the performance of the inference 
structures based on their mean values of inference results, 
i.e. mean true acceptance (MTA), mean true rejection 
(MTR), mean false acceptance (MFA) and mean false 
rejection (MFR). Table 1 showed the performance results 
of all the inference structures tested in the system. We 
can noticed that the results are not convincing as a good 
inference structures should show high MTA and MTR, 
and low MFA and MFR. 
 

3. Limitations of Yew's Application of BK 
Sub-triangle Product 

 
A. BK relational products 

As discussed earlier, in [3,10], a list of 19 inference 
structures based on K inference templates was proposed. 
Among these 19 inference structures, 7 of them em-
ployed max as the outer logical connective, 1 . These 
inference structures are K3, K4, K5, K6, K8, K11 and 
K17.  
 
Table 1. Ranking of Inference Structures at Threshold of Ac-
ceptance 0.8, Threshold of Rejection 0.3, Sorted According to 
MTA. 

Inference 
Structures 

MT
A MTR MFA MFR

K7 0.70 0.33 0.15 0.00
BK2 0.61 0.22 0.04 0.00
K9 0.54 0.11 0.33 0.00

BK3,K19 0.50 0.48 0.04 0.00
K18 0.50 0.26 0.04 0.00
K17 0.48 0.07 0.56 0.00
K12 0.44 0.33 0.07 0.00
BK1 0.44 0.00 0.67 0.00

K3,K4 0.43 0.00 0.74 0.00
K15 0.39 0.59 0.04 0.00
K16 0.39 0.52 0.04 0.00
B1 0.39 0.33 0.11 0.00
K6 0.37 0.00 0.78 0.00

K10 0.33 0.52 0.07 0.00
K8 0.31 0.00 0.81 0.00

K14 0.28 0.59 0.04 0.00
K13 0.28 0.41 0.04 0.00
K11 0.27 0.00 0.93 0.00
K5 0.26 0.00 0.96 0.00
K2 0.00 0.96 0.00 0.67
K1 0.00 0.63 0.00 0.67

 
Please note that the purpose of 1  in Sub-K Infer-

ence Template is to pick a candidate from two to be the 
result of the particular inference [refer to (17)]. The first 
candidate is the implication term that proposed by the 
original BK Sub-triangle product 2 ( )ab bcR S→ , 

whereas the second term is the additional term that pro-
posed by De Baets and Kerre \cite{DeBaets1993} for 
fulfilling non-emptiness condition 3 4( ( , ))ab bcR S . In 
case of the emptiness present, operations on implication 
term most probably yield a large number due to the na-
ture of implication operators p q→  if p=0.  

Obviously, using a min as the 1  can cause the result 
of the particular inference come from the additional term. 
Hence, the problem of emptiness solved with the solu-
tion proposed by De Baets and Kerre [13]. However, 
using max as 1  will take the implication term as out-
put of inference, which implies that the non-emptiness 
condition is ignored again.  

So, it is clear that max is not a valid outer connective 
in solving the Sub-K Inference Template due to the 
non-emptiness condition. The same conclusion hold if 
Sub-B Inference Template is studied and the reason is 
trivial. 
 
B. Using AndBot to Aggregate the Results of Implica-

tions 
In K15 and K16, AndBot was used as 2 , or the ag-

gregation operator for results of implications in the im-
plication term. However, this logical connective may not 
work as expected in practical. We explain this in the fol-
lowing paragraphs. 

In an n-variable environment, AndBot in (20) can be 
generalized as follow: 

1
AndBot( ) max(0, ( 1))

n

b b
b

p p n
−

= − −∑    (25) 

for 1, ,b n= . In K15 and K16, result of each implica-
tion is aggregated with (25), where bp  should be sub-
stituted with ab bcR S→ . 

The problem associate with AndBot as the aggrega-
tion operator is not prominent when the number of b is 
small and results of ab bcR S→ are big. However, it is 
easy to verify that when the number of b increases, the 
result of the aggregation decrease as long as the outcome 
of an implication is not 1.0. Some cases that are very 
likely to occur are as follow: 1) If all the 10 implications 
yield 0.9, the result of the aggregation is 0.0; 2) Out of n 
implications, if an implication yields 0.0, the result of 
the whole aggregation is also 0.0, even though all the 
other implications yield 1.0. 

The tendency to reduce the result uni-directionally is 
not a desirable property of an aggregation operator in 
this sense. So, we conclude that K15 and K16, as well as 
any inference structures that use AndBot to aggregate the 
results of implications are not good inference structures 
practically. 
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Table 2. Values Generated by Implication Operators. 

(a) ŁI ( , )R S  

 S 
R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0
0.6 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0
0.7 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0
0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0
0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) I ( , )KD R S  

 S 
R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0
0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 1.0
0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.9 1.0
0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1.0
0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.8 0.9 1.0
0.6 0.4 0.4 0.4 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.7 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.8 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 
4. The Influence of DeBaets and Kerre's Im-

provement on BK Sub-triangle Product 
 

As discussed in Section 2, the validity of sub-triangle 
product is, in fact come from the subsethood measure-
ment of one set in another, which provided by the impli-
cation term. Apparently, the additional term added by De 
Baets and Kerre to rectify the problem of emptiness has 
influenced in the subsethood measurement, despite it is 
the solution to non-emptiness condition.  

Also, we learned in Section 3 that, taking min as 1  
is to avoid the emptiness in 

abR  to affect the result of 
inference. However, it is surprising that the additional 
term that proposed by De Baets and Kerre [13] generate 
smaller values in most cases, not only when the empti-
ness happened. This means that with the min outer con-
nective, the sauce is better than the fish and the real sub-
sethood measurements are ignored most of the time. 

To study this influence in more detail, we consider 
the simplest instance where only 1 pair of (R,S) relations 
are involved. We listed 2 possible candidates of implica-
tion operators, ŁI and KDI  in Table 2(a) and Table 2(b) 
respectively. AndTop and AndBot, logical connectives 

that correspond to the additional term proposed by De 
Baets and Kerre in this case were listed in Table 3(a) and 
Table 3(b). Table 4 shows the difference between these 2 
terms when the values of implications were override by 
additional term - those cells without any values represent 
the combination of R and S which the values of implica-
tions are smaller or equal to the additional terms. 

From the tables, it is clear that the solution proposed 
by De Bates and Kerre has major influence on the infer-
ence structures in the case that 1  = min and there is 
only 1 pair of (R,S) relations. This cause the dilemma in 
choosing the outer connective since max is not a good 
connective either.  

One may claim that the influence of additional term 
may decrease when the number of (R,S) relations in-
crease. This is true because when the number of (R,S) 
relations increase, assigning 3  as Or operators, espe-
cially OrBot will result a relatively large value in the 
additional term, whereas And operators as 1  may 
cause the implication term to produce a smaller value. 
However, this is not enough to judge that the additional 
term will have no influence on the results of inferences. 
 

Table 3. Values Generated by AndTop and AndBot. 
(a) AndTop(R,S) 

 S
R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.3 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0.1 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.6 0.6 0.6
0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.7
0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.8
0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) AndBot(R,S)  
 S
R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4
0.5 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.7 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.8 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Table 4. Values Generated by AndTop and AndBot. 
(a) AndTop(R,S) 

 S 
R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
1.0           

(b) AndBot(R,S)  
 S 
R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8
0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.7
0.4 0.7 0.8 0.9 1.0 1.0 1.0 0.9 0.8 0.7 0.6
0.5 0.6 0.7 0.8 0.9 1.0 1.0 0.8 0.7 0.6 0.5
0.6 0.5 0.6 0.7 0.8 0.1 0.8 0.7 0.6 0.5 0.4
0.7 0.4 0.5 0.6 0.6 0.2 0.6 0.6 0.5 0.4 0.3
0.8 0.3 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.3 0.2
0.9 0.2 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.1
1.0           

(c) AndTop(R,S) 
 S 
R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9
0.2 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8
0.3 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
0.4 0.5 0.4 0.3 0.2 0.2 0.2 0.3 0.4 0.5 0.6
0.5 0.4 0.3 0.2 0.1  0.1 0.2 0.3 0.4 0.5
0.6 0.3 0.2 0.1    0.1 0.2 0.3 0.4
0.7 0.2 0.1      0.1 0.2 0.3
0.8 0.1        0.1 0.2
0.9          0.1
1.0           

(d) AndBot(R,S)  
 S 
R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
1.0           

 

5. Our Proposed Method 
 

With the argument that the influence of additional 
term will be minor and tolerable once the number of (R,S) 
relations increases, it is fair to solve the problems by re-
construct the set of influence structures with reasonable 
logical connectives. 

In this paper, we proposed this solution. Firstly, there 
should have no reason that AndBot must be kept as a 
candidate of 2 . Subsequently, max should also be re-
moved because of the reason explained in Section 3. 
Thus, the list of logical connective we have now is as 
follow: 

1

2

3

4

{min}
{Arithemetic mean, AndTop}
{Arithmetic mean, OrTop, OrBot}
{AndTop, AndBot}

=
=
=

=

   (26)  

 

With these logical connectives, we can generate a list of 
12 sub-K inference structures. Moreover, as the best ef-
fort to minimize the influence of additional term, the set 
of logical connectives can be further reduced, especially 

3 , which is the main determiner of the additional term. 
To reduce the influence of additional term, the largest 
possible values should be generated by 3 . From 
(21-22), we know that these logical connectives can be 
ranked as follow: 
 

Arithmetic mean OrTop( , ) OrBot( , )p q p q≤ ≤  
So, the list of logical connectives further reduced to: 

 

1

2

3

4

{min}
{Arithemetic mean, AndTop}
{OrBot}
{AndTop, AndBot}

=
=
=

=

     (27) 

These logical connectives generate a list of 4 sub-K 
inference structures, namely K7, K9, K18 and K19. One 
can compare to Table 5 and find out that these are the 
top ranked (high MTA rate) inference structures in per-
formance, along with BK2 and BK3. On the other hand, 
Sub-K inference structures that using max as outer con-
nective, such as K3, K4, K5, K6, K8, K11 and K17 are 
among the highest MFA rate. All these inference struc-
tures have MFA from 0.56 to 0.96, due to the influence 
of additional term and ignorance of non-emptiness con-
dition. The consistency to the experiment results shows 
that the theoretical discussions in previous sections are 
support by empirical work. 
 
A. Comparisons and Discussions 

It is worth to study the behavior of these inference 
structures in detail since they are among very few that 
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without the shortcomings pointed out in Section 3. 
However, we don't have the original data used in [3] for 
any further analysis, so a set of simulation data as shown 
in Appendix I is prepared for this purpose.  

These data was tested with K7, K9, K18 and K19. The 
same evaluation matrix is used. The results of the evalu-
ation are presented in Table 6. 
 

Table 5. Result of Inference using Test Data. 

Inference Structure MTA MTR MFA MFR 

K7 0.57 0.04 0.20 0.00 

K9 0.57 0.01 0.20 0.00 

K18 0.22 0.66 0.06 0.00 

K19 0.22 0.66 0.06 0.00 

 
Table 6. Comparing Performance of Inference Structures on 

Each Patient Group. 

(a) Performance of K7 
Patient Group MTA MTR MFA MFR 

Group 1 (D1) 1.00 0.00 0.00 0.00 

Group 2 (D2) 1.00 0.00 0.00 0.00 

Group 3 (D3) 0.33 0.1 0.50 0.00 

Group 4 (D4) 0.00 0.00 0.25 0.00 

Group 5 (D5) 0.50 0.05 0.25 0.00 

(b) Performance of K9 
Patient Group MTA MTR MFA MFR 

Group 1 (D1) 1.00 0.00 0.00 0.00 
Group 2 (D2) 1.00 0.00 0.00 0.00 
Group 3 (D3) 0.33 0.05 0.50 0.00 
Group 4 (D4) 0.00 0.00 0.25 0.00 
Group 5 (D5) 0.50 0.05 0.25 0.00 

(c) Performance of K18 
Patient Group MTA MTR MFA MFR 

Group 1 (D1) 0.00 0.60 0.00 0.00 
Group 2 (D2) 1.00 1.00 0.00 0.00 
Group 3 (D3) 0.10 0.50 0.05 0.00 
Group 4 (D4) 0.00 0.45 0.00 0.00 
Group 5 (D5) 0.00 0.75 0.25 0.00 

(d) Performance of K19 
Patient Group MTA MTR MFA MFR 

Group 1 (D1) 0.00 0.60 0.00 0.00 
Group 2 (D2) 1.00 1.00 0.00 0.00 
Group 3 (D3) 0.10 0.50 0.05 0.00 
Group 4 (D4) 0.00 0.45 0.00 0.00 
Group 5 (D5) 0.00 0.75 0.25 0.00 

 
One must understand that it is meaningless to compare 

the score of inference structures in Table 5 with Table 1 
directly, this is because different data is used. However, 

we can see the same pattern in both tables: K7 and K9 
have high MTA, followed by K18 and then K19; all the 
MFR are 0; K19 and K18 has lower MFA compared to 
K7 and K9; K19 has higher MTR compared to K7 and 
K9. 

When we go into the detail of the performance of 
each inference structures on each patient group (corre-
spond ing to a disease), we found more useful informa-
tion on the characteristic of these inference structures. 
We present these findings in Table 6.  

Firstly, from Table 6(a-b) we found that K7 and K9 
have quite similar performance. This is not surprising 
because the difference of K7 and K9 is only in their 4 , 
which might be the least significant among all. The low 
influence of 4  is more prominent in the case of K18 
and K18 (please refer to Table 6(c-d)), which both have 
t h e  s a m e  s c o r e  f o r  a l l  m e a s u r e m e n t s . 

Both K7 and K9 able to identify patients from Group 
1 and Group 2 accurately. The correct diseases were 
identified and no incorrect diseases are accepted. How-
ever, for the acceptant rate of patients from Group 5, the 
performance drops for both inference structures. This is 
because 2D , the disease that resemble 5D  is also ac-
cepted in the inferencing. The same thing happened for 

3D . Besides 3D , another 2 diseases, 1D  and 4D  which 
resemble 3D  are also accepted in these inferencing. For 
the inference of patients in Group 4, these inference 
structures just cannot identify the correct disease, but 

1D  is given as the inference result.  
For the rejection rate, we find that both K7 and K9 do 

not reject many diseases. Only 12 14P −  are identified as 
not victims of disease 5D . In other words, many diseases 
are left in the gray area.  

So, it is clear that K7 and K9 do not performing good 
in rejecting diagnoses, but work well in identifying dis-
eases when the diseases has clear characteristics (e.g. 

1D  and 2D ). For the identification of 3D , 4D  and 

5D , the performance is not so good. The reason of this 
can be explained by studying the characteristic of 
sub-triangle product and the signs/symptoms of theses 
diseases. The sub-triangle product find the relation from 
patients to diseases by examining the subsethood of the 
afterset of patients in the foreset of diseases (refer to 
Definition 6). However, in these cases, foresets of 3D  
and 4D  seems like a subset of foreset of 1D . So, if a 
patient's afterset is a subset of 3D  and 4D  afterset, it 
is also a subset of 1D . This characteristic of sub-triangle 
product caused the indistinguishable for diseases 3D  
and 4D  from 1D . The problem faces by identification 
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of 5D  can be explained in the same way. 
Both K18 and K19 did not performed well in identi-

fying correct diseases compared to K7 and K9. Yet, they 
shown great ability in rejecting false diagnoses. They 
rejected all the false diagnoses of patients from Group 2. 
Similar to true acceptance rate for K7 and K9, disease 

4D  is the biggest problem to these inference structures. 
They are not able to reject 1D  and 3D  as correct di-
agnoses. However, they able to identify 2D  and 5D  as 
wrong diagnoses in most cases, except for patient 17P . 
Rejecting patients 1 5P−  and 11 15P −  from wrong diagno-
ses have similar problem because of high resemblance of 
disease 3D  and 4D  to 1D . On the other hand, these 
inference structures did not falsely rejected any diseases. 

In previous work [3, 10], the test results are presented 
without further analysis on the performance and behav-
iour of the inference structures. In this paper, a detail 
analysis is performed and a better understanding on 
these inference structures is acquired. We can conclude 
that K7 and K9 have well performance in accepting cor-
rect diagnoses, whereas K18 and K19 performed good in 
rejecting wrong diagnoses. To form the inference engine 
of a medical expert system, a combination of K7/K9 and 
K18/K19 can be considered, which K7/K9 responsible to 
identify highly suspected diseases and K18/K19 respon-
sible to filter out impossible diseases. 
 

6. Conclusions 
 

In this paper, we revisit a typical application that em-
ployed inference structures that developed from BK 
sub-triangle product. We found 2 shortcomings in the 
applications that related to the initialization of logical 
connectives. We also studied the influence of additional 
term that proposed by De Baets and Kerre to the BK 
sub-triangle product. Based on these findings, conclude 
that out of 19 inference structures developed from sub-K 
relational product used in [3, 10], only 4 are working 
well. These inference structures are K7, K9, K18 and 
K19. The conclusion of this theoretical analysis is also 
supported by the result of empirical work.  

To have a better understanding on the performance of 
these inference structures. A set of simulation data is 
prepared, tested and evaluated with the same evaluation 
matrix as in [3, 10]. The result of this test is analogy to 
the result in [3, 10]. However, with more details on the 
test data that we have, we conclude that K7/K9 per-
formed well in accepting correct diagnoses, whereas 
K18/K19 can reject impossible diagnoses even better. So, 
a combination of these inference structures should work 
well in forming inference engine of a medical expert 
system. 

The imperfection of these inference structures was 
also found in the test with simulation data. When a dis-
ease with all its foreset of signs/symptoms resemblance 
the subset of another disease, inference structures de-
rived from sub-K relational product unable to identify 
these diseases correctly. To solve this, we suggest that 
square product that seeking similarities between foresets 
of diseases and aftersets of patients should be studied. Of 
course, it may be too restrictive to perform medical in-
ferences with similarity based inference structures. To 
cope with this problem, an upgrade to type-2 fuzzy the-
ory with higher ability to deal with uncertainty is sug-
gested. 
 

Appendix I 
 

A set of 5 diseases 1 5{ , }D D  are designed in the list, 
each with 8 signs/symptoms 1 8{ , }F F  (Table 7). To 
increase the difficulty of reasoning, the data, or relation 
between diseases and signs/symptoms are purposely de-
signed like this: 1) 1D  and 2D  are 2 basic cases where 

1D  shows high relations (0.7-1.0) to signs/symptoms 

1 6F − , whereas low relations (0.0 - 0.3) to 7 8F − . Rela-
tively, the 2D  shows low relations with first 2 
signs/symptoms and high in the others. 2) 3 5D −  are 
diseases to test the ability of identification of inference 
structures. 4D  is closely resemble to 1D  except its 2 
signs/symptoms, 5F  and 6F  showing moderate rela-
tions (0.4-0.6) instead of high. On the other hand, 3D  is 
also resemble 4D , as well as 1D . It shows low, instead 
of moderate or high in 5F  and 6F . Lastly, 5D $D_5$ 
is resembling 2D  except its 3F  and 5F , which is low 
instead of high. Among all, 5F  and 4D  have highest 
similarity. 
 

Table 7. Relations S –  
Relation between Signs/Symptoms and Diseases. 

        
Diseases
      
Signs 

D1 D2 D3 D4 D5

F1 0.8 0.2 0.9 0.8 0.2
F2 0.9 0.3 1.0 0.9 0.1
F3 0.7 0.8 0.8 1.0 0.0
F4 0.9 0.9 0.8 0.8 0.0
F5 0.8 1.0 0.2 0.5 0.7
F6 1.0 1.0 0.1 0.4 0.6
F7 0.2 0.9 0.3 0.1 0.8
F8 0.1 0.8 0.0 0.7 1.0
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Table 8. Relations R –  
Relation between Patient and Signs/Symptoms. 

         
Signs   
      
Patients 

F1 F2 F3 F4 F5 F5 F7 F8

P1 0.8 0.8 0.8 0.9 0.8 1.0 0.1 0.1
P2 1.0 1.0 0.8 0.9 0.9 0.8 0.1 0.1
P3 0.9 0.8 0.9 0.8 1.0 0.9 0.1 0.0
P4 0.8 0.9 0.8 1.0 0.8 1.0 0.0 0.2
P5 0.6 0.9 0.5 0.8 0.7 0.8 0.3 0.0
P6 0.2 0.1 0.9 0.8 0.8 0.8 1.0 0.8
P7 0.0 0.2 0.9 0.8 0.8 0.7 0.9 0.8
P8 0.1 0.1 0.9 0.9 0.8 1.0 1.0 0.8
P9 0.1 0.0 0.7 0.9 0.9 0.9 0.9 0.9
P10 0.2 0.2 0.8 1.0 0.8 0.9 0.9 0.9
P11 0.9 0.8 1.0 0.8 0.3 0.0 0.1 0.3
P12 0.9 0.9 0.9 0.7 0.0 0.3 0.1 0.1
P13 1.0 0.8 0.9 0.7 0.3 0.1 0.0 0.1
P14 0.9 0.9 0.8 0.9 0.0 0.0 0.0 0.0
P15 0.9 0.9 0.9 0.9 0.3 0.1 0.1 0.3
P16 0.8 1.0 0.7 0.9 0.5 0.6 0.1 0.1
P17 0.8 0.8 1.0 0.9 0.4 0.5 0.2 0.3
P18 0.9 0.9 0.9 0.8 06 0.4 0.3 0.3
P19 1.0 1.0 0.9 1.0 0.5 0.5 0.2 0.2
P20 0.9 0.9 0.9 0.9 0.5 0.4 0.3 0.3
P21 0.2 0.2 0.1 0.1 0.9 0.9 0.9 0.7
P22 0.2 0.1 0.0 0.1 0.9 0.8 1.0 0.8
P23 0.0 0.1 0.2 0.2 0.9 0.9 0.9 0.7
P24 0.2 0.2 0.0 0.1 1.0 0.8 0.9 0.7
P25 0.1 0.0 0.2 0.0 0.9 0.7 0.8 0.9
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