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Abstract
At present, text orientation is not diverse enough in the existing scene text datasets. Specifically, curve-orientated text is
largely out-numbered by horizontal and multi-oriented text, hence, it has received minimal attention from the community so
far. Motivated by this phenomenon, we collected a new scene text dataset, Total-Text, which emphasized on text orientations
diversity. It is the first relatively large scale scene text dataset that features three different text orientations: horizontal, multi-
oriented, and curve-oriented. In addition, we also study several other important elements such as the practicality and quality
of ground truth, evaluation protocol, and the annotation process. We believe that these elements are as important as the
images and ground truth to facilitate a new research direction. Secondly, we propose a new scene text detection model as the
baseline for Total-Text, namely Polygon-Faster-RCNN, and demonstrated its ability to detect text of all orientations. Images
of Total-Text and its annotation are available at https://github.com/cs-chan/Total-Text-Dataset.

Keywords Curved text · Scene text detection

1 Introduction

Scene text detection is one of themost active computer vision
topics due to the growing demands of applications such as
multimedia retrieval, industrial automation, assistive devices
for the visually impaired. Given a natural scene image, the
goal of text detection is to determine the existence of text,
and return the location if it is present.

Well-known public datasets such as ICDAR’03, ’11, ’13
[1] (ICDARs from here on), and MSRA-TD500 [2] have
played significant roles in initiating the momentum of scene
text-related research. For instance, almost all texts in the
ICDARs are in horizontal orientation [3], and it has inspired
researchers to incorporate the horizontal assumption [4–8]
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in solving the scene text detection problem. In 2012, Yao et
al. [2] introduced a new scene text dataset, namely MSRA-
TD500, that challenged the community with text arranged in
multiple orientations. The popularity of it in turn defined the
convention of ‘multi-oriented’ text. However, a closer look
into the MSRA-TD500 dataset revealed that most if not all
the text instances are still arranged in a straight line manner
as to ICDARs, as detailed in Sect. 3. From then on, multiple
datasets [9–11] were launched, with several noticeable tran-
sitions: (i) multi-oriented text has become a norm, (ii) scene
texts are no longer centered in the image, (iii) ever-increasing
dataset scale. However, curve-oriented text (curved text from
here onwards), despite its commonness (depicted in Fig. 1),
is missing from the context of study. Before the recent publi-
cations of Total-Text [12] and CTW1500 [13], CUTE80 [14]
was the only available scene text dataset with curved text.
However, its scale is too small with only 80 images and it
has very minimal scene diversity.

Without the motivation of a proper dataset, effort in solv-
ing the curved text detection problem is rarely seen. This
phenomenon brings us to our primary contribution of this
paper: Total-Text, a scene text dataset collected with curved
text as priority, filling up the gap in scene text datasets in
terms of text orientations. It has 1555 scene images, 11,459
annotated words with 3 different text orientations including
horizontal,multi-oriented, and curve-oriented.Ground truths
made available to the public include: spatial location, tran-
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Fig. 1 Curved text is commonly seen in real-world scenery

Fig. 2 Annotation details of Total-Text. a Image of Total-Text, b text region binary mask, c character-level binary mask, d fixed length polygon
vertices, transcription (case-sensitive), and orientation annotations (‘c’: curved, ‘m’: multi-oriented)

scription, and pixel level for text detection, recognition and
segmentation task (as shown in Fig. 2).

The secondary contribution of this paper is the proposal
of a new scene text detectionmodel,Polygon-Faster-RCNN
(Poly-FRCNN from here on). It is a refined Faster-RCNN
[15], to regress polygon instead of box parameters. It is capa-
ble of detecting text of all orientations, and binding them in a
precisemanner. Our proposedmodel achieves 0.85, 0.72, and
0.7 in terms of F-measure on ICDAR2013, ICDAR2015, and
Total-Text; demonstrating its effectiveness across datasets
with different attributes.

A preliminary version of the proposed dataset was pre-
sented earlier in [12]. This paper adds to the initial version
in significant ways as follows:

1.1 Improved ground truth

Firstly, we address the inconsistency of the polygon annota-
tion employed in our preliminary version [12] in Sect. 3.1.
The polygon annotation of our previous work was collected
with the mindset of covering the text region as tight as possi-
ble. As a result, the number of polygon vertices varies from
one text instance to another. This poses a practical problem
for detection frameworks such as Faster-RCNN, SSD, and
YOLO (all of them have inspired many scene text detection
works),which require afixednumber of vertices in the regres-
sion target. Hence, we have refined Total-Text’s annotation
with a series of controls, providing the community with a
higher quality and less biased ground truth to work with.
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1.2 Optimized evaluation protocol for Total-Text

Secondly, our experiments in Sect. 4 show that the current
recommended thresholds in DetEval [16] are not optimized
with the inclusion of curved text. A series of experiments
were conducted to determine a new set of threshold for a
fairer evaluation.

1.3 Scene text detection annotation tool

Thirdly, it is known that ground truth annotation is the biggest
bottleneck when scaling up a dataset. Karatzas et al. [17]
introduced an online annotation platform that stress on qual-
ity control and databasemanagement.However, themundane
and painstaking annotation task alone has much room for
improvements. Hence, we introduce Total-Text-Tool (T3
from here on) in Sect. 5, an aided annotation framework that
is capable of reducing annotation time yet attaining quality
ground truth.

1.4 Cross dataset experiment

Next, we have conducted an investigation to determine the
impact of Total-Text on scene text detection model. The
experiment results in Sect. 6.5 show that the model trained
on Total-Text demonstrates good generalization across other
scene text datasets.

1.5 State-of-the-art analysis

Last but not least, numerous works started to address the
curved text detection problem since the emergence of Total-
Text [12].Wediscuss about theseworks in length and provide
a complete table for future references in Sect. 6.6.

The refined ground truth, T 3, and all the baseline mod-
els are available at https://github.com/cschan/Total-Text-
Dataset for future reproduction and benchmarking.

2 Related works

This section will discuss closely related works, specifically
scene text datasets and text detection system. For complete-
ness, readers are recommended to read [3].

2.1 Scene text datasets

2.1.1 ICDAR2003-ICDAR2015

ICDAR2003 started with 509 camera taken scene text
images. All the scene text instances in the dataset appear
in horizontal orientation. In ICDAR2011, the total number
of images were reduced to 484 to eliminate duplication in the

previous version. ICDAR2013 [1] further trimmed down the
2011 version to 462 images in total. Improvement was done
to increase its text categories and tasks. In 2015, ICDAR
launched a new challenge, named as the ‘Incidental Scene
Text’ [9] (also known as the ICDAR2015), which has 1670
images captured using wearable devices. It is more challeng-
ing thanprevious datasets as it has included textwith arbitrary
orientation and most of them are out of focus. In addition,
ICDAR2015 is the first known dataset to utilize quadrilat-
eral as its ground truth format. This challenges scene text
algorithms to be more precise in detecting text.

2.1.2 MSRA-TD500

Yao et al. [2] introduced MSRA-TD500 in 2012 to address
the lack of arbitrary orientated text in scene text datasets.
It has 300 training and 200 testing images; annotated with
rotated bounding box.

2.1.3 USTB-SV1K

Yin et al. [18] constructed the USTB-SV1K dataset, which
has 1000 images collected from the street of six USA cities.
Again it features mostly multi-oriented text, annotated with
rotated bounding box.

2.1.4 COCO-text

Veit et al. [10] released COCO-text in the early 2016. It is
the largest scene text dataset to date with 63,686 images and
173,589 labeled text regions. It consists of mainly horizontal
and multi-oriented text, and a small amount of curved text.
However, it uses the axis-aligned rectangle as ground truth,
which is more suitable for linearly aligned text.

2.1.5 MLT

Nayef et al. [19] introduced theMLT dataset, which is one of
the latest multi script datasets collected for scene text detec-
tion, recognition, and script identification task. It consists of
18,000 images for both training and validation, featuring 9
languages with 6 different scripts. The main motivation of
this dataset is to challenge the community to design or train
a scene text detector that is robust to different scripts that
exist in today’s world.

2.1.6 CTW-12k

Shi et al. [20] introduced CTW-12k in the ICDAR2017
Robust Reading challenge, RCTW-17. Its collection was
motivated by the lack of Chinese scripts in existing datasets.
It has more than 12,000 images, featuring both Chinese and
English languages.
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2.1.7 MTWI

TheMTWI dataset introduced by He et al. [21] also includes
both Chinese and English languages in their dataset, which
was collected for the ICPR2018 Contest on Robust Reading
competition. It is one of the largest multi-lingual datasets to
date with 20,000 images.

2.1.8 SynthText

Gupta et al. [11] released SynthText in 2016. It is a large-
scale synthetically generated scene text dataset with 800,000
scene text images. Its annotation consists of word-level and
character-level axis-aligned bounding box, along with its
transcription. It was motivated by the fact that existing scene
text datasets are generally small in scale. The downside of
it is that it uses axis-aligned bounding box like COCO-text,
which does not fit multi-oriented text tightly.

2.1.9 CUTE80

Risnumawan et al. [14] introduced the first scene text dataset
that highlights curved text, namely CUTE80. Unfortunately,
it has only 80 images and limited sceneries.

2.1.10 CTW1500

CTW1500 collected by Liu et al. [13] is in principle the clos-
est dataset to Total-Text. Both datasets are similar in terms of
scale, polygonbounding region annotation, andwas collected
with at least one curved text per image.Despite having similar
motivation, both datasets are different in a number of ways.
First of all, Total-Text considers only Latin scripts as text
instances, while CTW1500 includes both the Latin and Chi-
nese scripts in their annotation. Such difference leads to the
second dissimilarity of both datasets, which is the granularity
of annotation. Total-Text’s text instances were annotated at
word level, while CTW1500’s were annotated at line level.
The third difference is the polygon ground truth between
them. CTW1500 annotation was fixed to have fourteen ver-
tices each while Total-Text (initial version) has a range from
four to twelve vertices. Lastly, CTW15-00 was annotated
with only the spatial location to facilitate the text detection
task while Total-Text’s annotation consists of spatial loca-
tion, transcription, orientation, and pixel-level mask for text
detection, recognition, and segmentation tasks.

2.2 Scene text detection

2.2.1 Scene text inspired handcrafted feature era

Scene text detection has seen significant progress after the
seminal work by Epshtein et al. [22] andNeumann andMatas

[23]. Epshtein’s proposal, strokewidth transform (SWT)was
based on the observation that characters in a text have sim-
ilar stroke width. In the latter, maximally stable extremal
regions (MSER) were exploited to extract character compo-
nents. They used geometrical properties of the components
and a classifier to form text candidates. Empirically, both
approaches represent characters better than classic feature
extractors like color, edge, texture and etc.

2.2.2 The emergence of CNN

Similar to many other computer vision tasks, the incorpo-
ration of convolutional neural network (CNN) in localizing
text is a very active research area at themoment. For instance,
Huang et al. [7] trained a character classifier to examine com-
ponents generated byMSER to improve the robustness of the
feature extraction process. Alongside this work, [24–26] also
trained a CNN to classify text components from non-text.
This line of work has demonstrated the high discriminative
power of CNN as a feature extractor.

2.2.3 Segmentation-based scene text detection

Interestingly, Zhang et al. [27] argued that leveraging on
CNN as a character detector has restricted the CNN’s poten-
tial due to the local nature of characters. Zhang et al. trained
two fully convolutional networks (FCN) [28]: (i) a Text-
Block FCN that considers both of the local and global
contextual info at the same time to identify text regions in
an image, (ii) a character-centroid FCN to eliminate the false
text line candidates. He et al. [29] trained a FCN to infer text
line candidates. By cascading a text region and a text line
supervised FCN, cascaded convolution text network (CCTN)
achieved generalization in terms of text orientations. Tang et
al. [30] proposed another cascaded convolution networks,
demonstrated the robustness of segmentation-based scene
text detection.

2.2.4 Proposal-based scene text detection

R-CNN [31], Fast-RCNN [32] to Faster-RCNN [15] are a
series of groundbreaking works for object detection. The
key aspects that contributed to the success of Faster-RCNN
are region proposal network (RPN), anchor boxes, and the
end-to-end training scheme from feature extraction to region
proposal and finally the predictor. Inspired by them, R2CNN
[33] integrated a new regression head to the original Faster-
RCNN framework to learn inclined box coordinates. Ma et
al. [34] argued that axis-aligned anchor boxes are not the
best fit for scene text that appear in wild orientations. They
trained their RPN to propose rotational bounding box, which
is essentially bounding box with an extra bit for angle infor-
mation.
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2.2.5 Single network scene text detection

SSD [35] and YOLO [36] on the other hand have no proposal
module in their design. It is capable of running at 59 and 122
FPS, respectively, the fastest object detection framework we
have today. Works like [37–40] have built their algorithm
based on SSD. He et al. [41] demonstrated the potential edge
of direct regression over offset prediction with a single fully
convolutional network.

2.2.6 Curved text detection

Risnumawan et al. [14] used handcrafted features to identify
character candidates, then leveraged on the eclipse growing
algorithm to look for potential grouping candidates in the
feature space. Their growing algorithm is unique in such a
way that it has no horizontal orientation assumption that was
conventional at the time. Such feature has proven its effec-
tiveness against text of all orientations with the cost of slow
running time (15.8 s per image). CTD [13] is the first mod-
ern scene text detector that was designed with curved text in
consideration. It was built on top of the Faster-RCNN archi-
tecture, trained to regress 30 values (xmin, ymin and fourteen
pairs of width and height) that will form a polygon-shaped
output with fourteen vertices. Instead of regressing the poly-
gon vertices directly, the work followed the convention of
Faster-RCNN [15] and DMPNet [37], agreed that relative
information (width and height) are much easier targets to be
optimized. The study also showed that LSTM can be used
to model the relationship between each w and h to refine
the polygon-shaped output. More latest scene text detection
works can be found in Sect. 6.6.

3 The Total-Text dataset

3.1 Dataset attributes

3.1.1 Curved text is an overlooked problem

The effort of collecting Total-Text is motivated by the lack
of curved text in existing scene text datasets. As depicted in
Fig. 1, curved text can be easily found in real life scener-
ies such as: business logos, signs, entrances. Surprisingly,
such data has close to zero existence in the current datasets
[1,2,9]. The most popular scene text dataset over the decade,
ICDARs have only horizontal text [3]. Consequently, vast
majority of algorithms assumed text linearity to tackle the
problem effectively. As a result of overwhelming attentions,
performances of text detections in ICDARs are saturated at
quite a high point (0.9 in terms of F-measure). Meanwhile,
multi-oriented text also received a certain amount of atten-
tions from the scene text community. MSRA-TD500 is the

well known dataset that introduced this challenge to the field;
algorithms like [18,27] were designed to cater multi-oriented
text. To the best of our knowledge, scene text detection algo-
rithms designed with curve orientation [14] in consideration
is relatively unpopular. We believe that the lack of such
dataset is the reason why the community has overlooked it.
Hence, we propose Total-Text with 4,907 curved text out
of 11,459 text instances, hoping to spur an interest in the
community to address curved text detection and recognition
problem.

3.1.2 Curved text observation

Geometrically speaking, a straight line has no angle vari-
ation along the line, and thus can be described as a linear
function, y = mx + c. A curved line is not a straight line.
It is free of angle variation restriction throughout the line.
Shifting to the scene text perspective, it is observed that hor-
izontal oriented text or word is a series of characters that can
be connected by a straight line; their bottom alignment in
particular for most cases. At the same time, multi-oriented
text, in scene text convention, can also be connected by a
straight line, given an offset with respect to a horizontal line.
Meanwhile, characters in a curved word do not have an uni-
fied angle offset, in which deemed to fit a polynomial line
in text level (see Fig. 3 for examples). In our dataset col-
lection, we found that curved text in natural images could
vary from slightly curved to extremely curved. Also, it is not
surprising to find that most of them are in the shape of a
symmetric arc due to the symmetrical preferences in human
vision [42].

3.1.3 Detection ground truth annotation

Text instances in Total-Text were annotated at word-level
granularity. Adopted from the COCO-text dataset, word-
level text instances are an uninterrupted sequence of char-
acters separated by a space. Unlike generic object, text
detection demands tighter bounding region. For instance,
ICDAR2015 is the first ever scene text detection dataset that
employs quadrilateral ground truth format. The main motive
behind that is to have a ground truth region that is capa-
ble of binding text region tightly. Total-Text uses polygon
bounding region for the same reason. Figure 4 illustrates
the apparent benefits of polygon bounding region over axis-
aligned box. More details of the polygon format employed
in the proposed dataset are detailed in Sect. 3.1 (Regulated
polygon ground truth). Similar to ICDAR2015, only Latin
scripts were annotated with proper transcriptions; other lan-
guages, digital watermarks and unreadable text were labeled
as do not care in the ground truth (marked as ‘#’). Do
not care area picked up by detection algorithms should be
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Fig. 3 (Top) examples from ICDAR2013, ICDAR2015 andMSRA-TD500 datasets. (Bottom) examples from Total-Text, curved text with different
curvatures, slightly curved to extremely curved text

Fig. 4 Comparison between axis-aligned rectangular bounding box (red color) and the proposed polygon bounding region (green color) in Total-
Text. It shows that polygon appears to be the better candidate for ground truth (color figure online)

removed before evaluation. We recommend Eq. 1 for filter-
ing:

Areao = Areag ∩ Aread
Aread

(1)

where detection candidateswithAreao higher than 0.5 should
be removed (Areag is the ground truth area and Aread is the
detection area).

Besides, text region binary mask (Fig. 2b) is provided as
well to handle the recent trend in scene text detection research
that cast detection as a segmentation problem [27,29,43].

3.1.4 Recognition ground truth annotation

Ground truth for the word recognition challenge, the tran-
scriptions (case-sensitive) of every text instance, are provided
as well (Forth column in Fig. 2d).

3.1.5 Segmentation ground truth annotation

The finest level of Total-Text’s annotation is the character-
level pixel binary mask (Fig. 2c). Inspired by ICDAR2013,
such ground truth is provided to cater segmentation-based
challenges. Its annotationprocess is themost time-consuming
process of all annotations. In order to ease the effort in anno-
tating such ground truth, multiple preprocessing schemes are
used in the workflow. The entire workflow can be described
as follows:

(i) From the original image, crop an image patch that con-
tains text instance based on the annotated detection
ground truth (Fig. 5a).

(ii) Prompt annotator to adjust the threshold for all three
color channels.1 This is based on the observation that

1 This is achieved by ‘colorThreshold’ function in MATLAB.
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Fig. 5 Pixel-level annotation process. a Input image patch. b, c Adjust the color thresholds to separate text from background region. d–f Remove
‘non-text’ region. g Final result

Fig. 6 Pixel-level annotation from scratch. a And b shows the process of binding the character region, while c depicts the final result

the color of the same text instances is usually in con-
trast to the background region. Adjusting the thresholds
would be able to ‘zero-out’ the pixel (which is the
background pixels in this context) below the adjusted
threshold (Fig. 5b, c).

(iii) Prompt annotator to bind the regionswith the remaining
background pixels in order to ‘zero-out’ them (Fig. 5d,
e).

(iv) Repeat step (i) to (iii) until all the text instances are
annotated.

However, there are caseswhere the aforementioned threshold
adjustment techniquewould not be able to help in preprocess-
ing the text patches. Text regions with uneven illumination or
color that is similar to the background region are two of such
cases. Under such circumstances, annotator has the option to
bind the character region from scratch, as visualized in Fig. 6.

At the end of the process, a binarymapwith text pixel labeled
as ‘1’ and background pixel labeled as ‘0’ is produced and
saved as a ‘.png’ file.

3.1.6 Orientation annotation

The orientation of every text instance was annotated for
modularity convenience. Specifically, the annotation is repre-
sented as such: ‘h’ for horizontal text, ‘m’ for multi-oriented
text, and ‘c’ for curved text. For example, if one prefers to
evaluate the effectiveness of an algorithm to detect curved
text only, one could leverage this annotation to filter out
instances of other orientations.

Figure 2 depicts all the aforementioned annotations. Con-
sidering the scale of this dataset is manageable, we annotated
the entire datasetmanually and cross checkedwith three other
laboratory members.
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Fig. 7 The workflow of our new polygon annotation scheme. (Left)
prompt for four vertices. The system will then automatically gener-
ate three equidistant guiding lines based on them. (Middle) annotate
the interception point (represented by the symbol ‘*’) between yellow

guiding lines and the top part of the text. (Right) lastly, annotate the
interception point between green guiding lines and bottom part of the
text (color figure online)

Algorithm 1 Algorithm to generate the guiding lines in the
regulated polygon annotation process.
Let the pair of input vertices be (x1, y1) and (x2, y2)
xmin = min(x1, x2)
xmax = max(x1, x2)
ymin = min(y1, y2)
ymax = max(y1, y2)
width = xmax - xmin
height = ymax - ymin
if width > height then

equidistant interval = (xmax - xmin) /4
Line1x1 = xmin + equidistant interval
Line2x2 = Line1x1 + equidistant interval
Line3x3 = Line2x2 + equidistant interval

else if height > width then
equidistant interval = (ymax - ymin) /4
Line1y1 = ymin + equidistant interval
Line2y2 = Line1y1 + equidistant interval
Line3y3 = Line2y2 + equidistant interval

end if

3.1.7 Regulated polygon ground truth

Initial version of Total-Text’s polygon annotationwas carried
out with the mindset of covering text instances tightly with
the least amount of vertices. As a result, the uncontrolled
length of polygon vertices is not practical to train a regres-
sion network. In this paper, we refined Total-Text annotation
using the following scheme. Apart from setting the number
of polygon vertices to 10 (empirically, 10 vertices are found
to be sufficient in covering all the word-level text instances
tightly in our dataset), we used a guidance concept inspired
by [13], which was introduced to remove human annotators’
bias and in turn producing a more consistent ground truth.

The new polygon ground truth annotation steps are illus-
trated inFig. 7. First, humanannotator is required tomanually
pick four different vertices that serve as the beginning and
ending vertices covering of a word instance. As illustrated
in Fig. 7, two vertices at the top corner of the word “MAR-
LEY” (red and green dot) will be employed to generate three
equidistant yellow guiding lines. The algorithm that gener-
ates the guiding lines is explained inAlgorithm 1. The human
annotator will then select an interception point (represented
as “*”) along each yellow guiding line which best binds the
top boundary of the word. The same process is repeated for

Fig. 8 a Original ground truth with uncontrolled length of polygon
vertices. b Our new regulated ground truth with a fixed length of 10
vertices

the bottom part of the word (with yellow and cyan dots, and
green color guiding lines). Figure 8 shows the comparison
between the old and new ground truth. We found that the
proposed scheme relief some extend of the cognitive strains
during the annotation process as the annotator has to make
less decision.Additionally, the described guidingmechanism
removes the part where annotators have to decide whether
which location to annotate (which could vary largely from
one to another), and hence removing potential bias in the
produced ground truth.

Besides, the new polygon ground truth was collected with
a new condition: the first point of the polygon starts from the
starting reading direction of the word, as illustrated in Fig. 9.
Such information is useful for the text recognition task.

3.2 Dataset statistics

3.2.1 Strength in numbers

Total-Text is split into two groups: training and testing set
with 1255 and 300 images, respectively. Figure 10 shows a
series of statistical information of Total-Text. It has a total of
11,459 annotated text instances, 7.37 instances per image on
average. More than half of the images in Total-Text have two
different orientations and above, yielding 1.8 orientations
per image on average. Apart from these, the dataset is also
collected with quality in mind, including scene complexity
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Fig. 9 New information in the polygon ground truth of Total-Text. Red
points are the starting point of each text region (color figure online)

such as text-like and low contrast background, different font
types and sizes as illustrated in Fig. 11.

3.2.2 Orientation diversity

Approximately half of the text instances are curved, and the
other half is split almost equally between horizontal and
multi-oriented. Although all the images were collected with
curved text in mind, other orientations still occupy half of the
total instances. A closer look into Total-Text revealed that
curved text usually appear with either horizontal or multi-
oriented text. The mixture of text orientations in an image
challenges text detection algorithms to achieve robustness
and generalization in terms of text orientations.

3.2.3 Scenery diversity

Scenery in Total-Text’s images is well diversified too.
Business-related places like restaurant, branding logos, and
merchant stores (e.g., Nando’s, Starbucks) occupy 61.9%
of the curved text instances in Total-Text. 20.5% of them
appear in tourist spots such as park, museums, and land-
marks (e.g., Beverly Hills in America, Harajuku in Japan) as
illustrated in Fig. 1. The rest of curved text instances appear
in places like sport club logo, advertising material, alarm
devices, etc.

4 Evaluation protocol

4.1 DetEval

Total-Text was first introduced with the DetEval [16] evalu-
ation protocol. However, we realized that the recommended
tp and tr thresholds, 0.4 and 0.8, respectively, are not opti-
mized with the inclusion of curved text and polygon ground
truth in Total-Text. Firstly, τ is a metric in DetEval which
measures how precise is a detection. As we can see in
Fig. 12c, Poly-FRCNN (detailed in Sect. 6) outperformed
the loosely bounded output from Box-FRCNN significantly
by 0.35. However, when the tp threshold is set as low
as 0.4, both of them gave the same contribution to the
final score. In addition, Fig. 13 shows more comparisons
between existing state-of-the-art curved text detection mod-
els [13,44,45] and Box-FRCNN. As we can in the figure,
Box-FRCNN’s prediction box is way looser than all the
other state-of-the-art methods, with way lower tau score
(with the smallest gap of 0.4). However, similar to the

Fig. 10 Statistics of the Total-Text dataset. a Distribution of text instances in Total-Text. The images displayed on top of the histogram are the
example images with different number of text instances. b Distribution of three text orientations on Total-Text
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Fig. 11 Challenges in Total-Text. Apart from the commonly seen challenges in the scene text domain such as camouflage background, variations of
font size, perspective distortion, and illumination, Total-Text challenges text understanding algorithm to handle a combination of multiple oriented
text in a single image

example in Fig. 12c, all of them were classified as True
Positive in the evaluation process. Based on these exam-
ples, we further establish that the current tp value is not
high enough to distinguish the precision of a loose and
a tight detection box. Hence, we propose to increase the
threshold to 0.6, which as we can see in Fig. 12a, is the
point where Box-FRCNN loses its advantage over Poly-
FRCNN.

On the other hand, σ measures how much of the ground
truth area is covered. Figure 12c shows that Box-FRCNN’s
prediction box scored with its loose prediction almost full
marks while Poly-FRCNN scored 0.78 as it tried to match
the ground truth precisely. With the tr as high as 0.8, Poly-
FRCNN’s prediction got forfeited in the final calculation.
In order to further validate our point, we again refer to
the detection output of existing state-of-the-art methods,
which is displayed in Fig. 14. As we can see, all the text
regions are bound precisely by the detection outputs, yet
they failed to cover more than 80% of the ground truths (i.e.,
tr = 0.8). This is because polygon ground truth has much
more vertices (hence much more offset potential) than an
axis-aligned bounding box (which DetEval was designed

to address), which is not an easy task to meet at a high
level of agreement. Our experiments in Sect. 5 validate
this by showing that even human annotation cannot per-
fectly match each other in multiple attempts. As a result,
all of the listed examples were being classified as False
Positive during the evaluation process. Based on these find-
ings, we propose to relax the tr, lower it down from 0.8
to 0.7. As observed in Fig. 12a, at our proposed tr, the
performance gap between the loose output Box-FRCNN
and tight output Poly-FRCNN became significant and much
fairer.

On a global scale, Table 1 compares the performance
of the latest works which benchmarked on Total-Text with
the default threshold values of 0.4 and 0.8 and the pro-
posed threshold values of 0.6 and 0.7. Firstly, we see that
the performance of Box-FRCNN ranks 3rd in terms of
F-measure with the existing threshold values. Once we con-
figured DetEval to our proposed values, all of Box-FRCNN’s
scores drop dramatically and ranked last in the table. On
the other hand, all the other tight detection box produc-
ing methods seen an increment in all metrics mainly due
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Fig. 12 Performance of Box-FRCNN and Poly-FRCNN across differ-
ent tr and tp with the DetEval evaluation protocol

to lesser False Positive counts (as a result of the relaxation
of tr).

4.2 PASCALVOC

Similar toCTW1500 and ICDAR2-015, PASCALVOCeval-
uation method is made available for Total-Text as well. Our
experiment shows that the standard 0.5 Intersection Over
Union (IoU) threshold gave Poly-FRCNNahigher score than
Box-FRCNNas expected. Thementioned comparison can be
seen in Table 2.

Fig. 13 Detection examples of various methods in compared to Box-
FRCNN. All of these detections are counted as a True Positive with the
current tp(0.4). Column 1: Box-FRCNN, column 2: CTD [13], column
3: TextField [44], column 4: Mask-TextSpotter [45]. Green: ground
truth, blue: detection output (color figure online)

Fig. 14 Detection examples ofCTD[13] (column1),Mask-TextSpotter
[45] (column 2), and TextField [44] (column 3). All of these detections
regions will be discarded by the current tr (0.8). Green: ground truth,
blue: detection output (color figure online)

4.3 Intersection area between polygons

The calculation of intersection between the prediction area
and the ground truth area is the core of both the DetE-
val and the Pascal VOC evaluation protocols. The original
intersection area calculation algorithm in both the men-
tioned protocols was designed to address the intersection
between rectangles (i.e., axis-aligned bounding box) only.
In our implementation, we have replaced that module with
the algorithm that is capable of calculating the intersection
area between polygons precisely so that they give accurate
evaluation. Our implementations of both DetEval and Pascal
VOC were written in both MATLAB and Python languages.
In our MATLAB implementation, the function ‘polybool’2

is utilized to identify the intersection area, while we use

2 https://www.mathworks.com/help/map/ref/polybool.html.
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Table 1 Comparison between loose bounding box predicting Box-FRCNN and tight bounding box predicting methods with old and new thresholds
values of DetEval

DetEval’s thresholds tp = 0.4, tr = 0.8 tp = 0.6, tr = 0.7

Methods Precision Recall F-measure Rank Precision Recall F-measure Rank

Box-FRCNN 0.74 0.67 0.70 3 0.50 0.46 0.48 6

Poly-FRCNN-3 0.68 0.59 0.63 5 0.78 0.68 0.73 5

CTD [13] 0.61 0.59 0.60 6 0.77 0.74 0.75 4

MSR [46] 0.83 0.68 0.75 2 0.81 0.73 0.77 3

Mask-TextSpotter [45] 0.69 0.63 0.66 4 0.83 0.75 0.79 2

TextField [44] 0.76 0.75 0.76 1 0.83 0.82 0.83 1

Table 2 Evaluation of Poly-FRCNN on Total-Text. All the models were evaluated on both DetEval and Pascal VOC (in the bracket) evaluation
protocols

Methods Wholeset Curved-set Non-curved-set

P R F P R F P R F

Box-FRCNN 0.50 (0.59) 0.46 (0.54) 0.48 (0.56) 0.19 (0.32) 0.21 (0.37) 0.20 (0.34) 0.78 (0.83) 0.63 (0.66) 0.70 (0.74)

Poly-Baseline 0.61 (0.67) 0.53 (0.59) 0.57 (0.63) 0.42 (0.48) 0.42 (0.50) 0.42 (0.49) 0.73 (0.80) 0.60 (0.66) 0.66 (0.73)

Poly-FRCNN-3 0.78 (0.80) 0.68 (0.70) 0.73 (0.75) 0.66 (0.69) 0.67 (0.71) 0.66 (0.70) 0.84 (0.86) 0.69 (0.70) 0.76 (0.77)

Poly-FRCNN-5 0.72 (0.76) 0.65 (0.69) 0.68 (0.72) 0.56 (0.63) 0.57 (0.65) 0.57 (0.64) 0.8 (0.83) 0.69 (0.72) 0.74 (0.77)

The bold values represent the best results in their respectively comparison.
P Precision, R Recall, F F-measure

the ‘skimage.draw.polygon’3 function in Python to generate
binary masks for two polygons, and sum them up to obtain
their intersection area.

5 Scene text detection annotation tool

The effort of annotating a dataset is usually daunting. Qual-
ity annotation format such as our regulated polygon comes
with a higher cost than the axis-aligned bounding box and
quadrilateral that were commonly used in existing scene text
datasets. Inspired by Castrejon et al. [47], we propose a new
scene text detection annotation tool to ease the mundane
and time-consuming process. Our proposed annotation tool,
namely Total-Text-Tool (T3), is capable of reducing annota-
tion time by 25%with an agreement rate of 84%with human
annotators. The main differences between T3 and Polygon-
RNN [47] are: (i) the latter requires user to input image
patches to the system, while T3 takes the whole image, and
(ii) the suggestion (polygon vertices) in T3 is designed to be
aligned with our regulated polygon format as explained in
Sect. 3.1, which deemed to fit text instances better.

3 http://scikit-image.org/docs/dev/api/skimage.draw.html#skimage.
draw.polygon.

5.1 Total-Text-Tool

Training a modern scene text detector requires a lot of anno-
tated data and time. In the scene text research domain, most
of these invested resources reach the end of lifewhen the per-
formance tables are tabulated. Themain idea of T3 is to reuse
the well trained and good performing scene text detectors to
predict the potential text regions ahead of the annotation pro-
cess. The predictionswill serve as a suggestion for the human
annotator.

The ideal flow of a good quality annotation tool should
consist of (i) cropping out text region with bounding box, (ii)
select a series of vertices for either quadrilateral or polygon
that will bind the text instance tightly. This workflow is used
in [17] and [13], which will be compared to as a baseline
in our experiment. T3 aids the user with both of the pro-
cesses in this workflow. The annotation process of T3 is as
follows: (i) firstly, a new scene image will be processed by a
scene text detector to output both bounding box and polygon-
shaped predictions. (ii) Secondly, T3 crops the input image
with the provided bounding boxes. (iii) Thirdly, T3 displays
the cropped image patches with interactive polygon vertices
on top for annotator to adjust and fit the text region tightly.
Figure 15 illustrates the aforementioned workflow, from left
to right of the figure. At the same time, user has the option to
discard poorly suggested bounding box or polygon and man-
ually annotate it from scratch using the baseline method.
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Fig. 15 Overview of the detection ground truth annotation process with the aid of T3

Fig. 16 Comparison of time taken to annotate with T3 (in blue) and
without (in red). The better the performance of Poly-FRCNN on the
image, the lesser time it takes for human annotator with the help of T3.
The agreement of annotation (black line) with the aid of T3 is remained

as high as the one without (left end of the chart), averaged at 84% IoU
with a standard deviation of 4% across 100 images we used in this
experiment (color figure online)

5.2 Experiment setup

An experiment was carried out in order to measure the effi-
ciency of using T3. The scene text detector used in our
experiment is Poly-FRCNN-5 (see Sect. 6.1 for details). We

selected 100 images from the testing set according to the
actual F-measure distribution (depicted by the scale of x-
axis of Fig. 16) of Poly-FRCNN-5 to ensure the legitimacy
of our experiment. The human annotator was informed and
trained on both the baseline and the T3 annotation tool before
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the experiment. The human annotator was given the freedom
to take a break whenever he feels like to, ensuring that he will
not suffer from fatigue which in turn introduces bias to the
experiment. Both time and annotation quality weremeasured
internally (within the script) and individually to each image.

5.3 Performance analysis

In overall, it took the human annotator a total of 8989.58 s
(2.5 h) to annotate all the 100 images with the baseline anno-
tation tool. With T3, the total time taken is reduced by 25%
to 6832.34 s (1.9 h). The quality of both annotation results is
in an agreement of 84%, with a standard deviation of 4.6%
in IoU terms. Figure 16 illustrates the comparison of time
taken (normalized to one) between both methods across all
100 images. As we can see, the better the performance of
the detector, the lesser time it takes for the human annota-
tor to finish the annotation process with the aid of T3. Note
that on those images where the detector scores as low as 0 to
0.4, those suggestions were mostly bad, therefore, the human
annotator was required to annotate it from scratch. Hence the
time taken for those images is almost identical or sometime
worsewithT3 due to the extra decision required to discard the
suggestions. Even in such cases, the agreement of annotation
between the two methods could not match perfectly. This is
mainly due to (i) as pointed out in [47], IoU is a strict metric
for small object instances, which is the nature of scene text
in general, and (ii) polygon has much more vertices (ten in
this case) hence comes with a smaller margin for offset. The
T3 framework is generic; thus, any scene text detector can
be part of the workflow. The performance of Poly-FRCNN-5
has much more room for improvement; a better performing
detector will in turn further reduce the annotation time with
T3.

6 Polygon-faster-RCNN

Poly-FRCNN is a novel scene text detection model that is
capable of detecting text of all orientations. It was designed
to serve as a baseline for future benchmarking on Total-Text.
Similar to [13,33,34,37], Poly-FRCNN adopted the Faster-
RCNN architecture. In line with our motive to use polygon
as the ground truth format, our baseline produces polygon-
shaped output, aims to bind text region of all shapes tightly.
Specifically, we propose a new text line encoding method to
embed every kind of existing text region ground truth formats
(i.e., axis-aligned bounding box, quadrilateral, and poly-
gon) into text line parameters. Consequently, Poly-FRCNN
is trained to regress the text line location of every text region
in an image, which will then be converted to its original text
region shape as the final detection output. The following part
will discuss all the technical details of Poly-FRCNN.

6.1 Text line encodingmethod

The conventional regression target (xm, ym, w, h) used in
Faster-RCNN, SSD and YOLO can only be used for axis-
aligned rectangular boxes, but not polygons. DMPNet [37]
used an encoding method for quadrilateral and claimed that
relative information is easier to train instead of absolute val-
ues of quadrilateral vertices. Following that, [13] trained
their CTD with a straightforward polygon encoding method,
which convert absolute polygon vertices into a series of rela-
tive distance of each vertex to the xmin, ymin of the particular
text region (i.e., hn ,wn). We argue that such encoding does
not embed enough information for the model to learn about
text region; hence, we propose a new encoding method,
namely ‘TextLineEncodingMethod’,whichwill convert any
text region ground truth into text line parameters. It is worth
to note that such encoding method is flexible for all exist-
ing text detection ground truth; hence, we are able to carry
out experiments on different existing datasets, as detailed in
Sect. 6.4.

6.1.1 Variants of Poly-FRCNN

We discovered that six vertices are the minimum amount of
vertices required to cover most of the curved texts in Total-
Text.4 Subsequently, Poly-FRCNN-3 is designed to produce
six vertices polygon bounding region. Our encoding method
splits six vertices into three opposing pairs, hence the nota-
tion ‘3’. The overview of Poly-FRCNN-3 architecture can
be seen in Fig. 17. The initial version of Total-Text polygon
ground truth was converted to have a fixed length of six ver-
tices for the training process, which can be seen in Fig. 18a.
On the other hand, Poly-FRCNN-5 is the scaled-up version
of 3, which has 10 more parameters in the regression head.
Poly-FRCNN-5 regresses five pairs of opposing vertices. It
was trained with the regulated polygon ground truth men-
tioned in Sect. 3.1. With more vertices, Poly-FRCNN-5 aims
to produce tighter detection outputs than Poly-FRCNN-3.
Moreover, it is the scene text detector used in the T3 aided
annotation tool as described in Sect. 5. All the following
discussions will be based on the Poly-FRCNN-3 model for
simplicity.

6.1.2 Encode

The process of encoding converts text region into text line
parameters. Consider the text instance in Fig. 18a, bound
by a polygon with six vertices ({x0, y0}; {x1, y1}; {x2, y2};
{x3, y3}; {x4, y4}; {x5, y5}), we first split them into three
pairs where every opposing vertex form a pair. For instance,

4 It is sufficient to cover most of the text regions in Total-Text but not
texts with larger curvature. Examples in Fig. 21.
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Fig. 17 The overview of Poly-FRCNN. The polygon classifier network (PCN) module is designed to regress polygon-shaped detection region

{x0, y0} is a pair with {x5, y5}. Then, for every pair of ver-
tices, we encode them into five values. Taking the {x0, y0}
and {x5, y5} pair as example,

(i) xm(0) is the middle point between x0 and x5,
(ii) ym(0) is the middle point between y0 and y5,
(iii) h(0) is the height between y0 and y5,
(iv) w(0) is the width between x0 and x5, and

Figure 18b visualizes the encoding method, and the formu-
lations are listed in Eq. 2.

xm(i) = (x(i) + x((N−1)−i))/2

ym(i) = (y(i) + y((N−1)−i))/2

h(i) = y((N−1)−i) − y(i)

w(i) = x((N−1)−i) − x(i)

For i = [0, N/2)

(2)

‘i’ and ((N−1)−i) translates to the opposing pair of vertices,
where N is the total number of vertices. We replace ym(i)

and xm(i) from the second point onwards (i >= 1) with the
distance from its previousmiddle point, denoted as dym(i) and
dxm(i) (formulated with Eq. 3) to further reduce the need for
absolute information [37].

dxm(i) = xm(i) − xm(i−1)

dym(i) = ym(i) − ym(i−1)

For i = [1, N/2)

(3)

Figure 18c visualizes the aforementioned encoding. At the
end of the encoding, we obtain twelve parameters (xm(0),
ym(0), h(0), w(0), dxm(1), dym(1), h(1), w(1), dxm(2), dym(2),

Fig. 18 Text line encoding method. a Example of a 6-vertex converted
polygon ground truth in Total-Text. b Encoding of xm(i), ym(i), h(i),
w(i). c Encoding of dxm(i) and dym(i). d Twelve parameters at the end
of the encoding process
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h(2), w(2)) which resemble a text line as our training target,
which can be seen in Fig. 18. Note that we refer these param-
eters as ‘encoded polygon’ from here on.

6.1.3 Decode

The process of decoding converts the regressed text line val-
ues back to the text region detection output. During decoding,
we will first determine all the middle points from second
points onwards, (xm(i) and ym(i)) using Eq. 4:

xm(i) = xm(i−1) + dxm(i)

ym(i) = ym(i−1) + dym(i)

For i = [1, N/2)

(4)

Then hi , w(i)1, and w(i)2 will be used to transform these
middle points back to six vertices using Eqs. 5-6.

x(i) = xm(i) − w(i)/2

y(i) = ym(i) − h(i)/2

For i = [0, N/2) (5)

x(i) = xm(i) + w(i)/2

y(i) = ym(i) + h(i)/2

For i = [N/2, N ) (6)

The transformation is straightforward, y(0), y(1), and y(2) will
always be the opposite of y(5), y(4), and y(3), respectively,
with the height values: h(0), h(1), and h(2) (likewise for x(i)

with w(i)).

6.2 Anchor polygons parameterization

In linewith Faster-RCNN, our encoded polygon ground truth
and predictions were further parameterized with the encoded
anchor polygons. We use the term anchor polygons because
we turn four vertices rectangular anchor box into six vertices
by adding middle points between the corresponding vertices.
The network essentially regresses the offset value between
the encoded anchor polygons and the nearby encoded ground
truth (both encoded with the Text Line encoding method in
Sect. 6.1). Note that our model regresses both a rectangular
bounding box and an encoded polygon for each proposal.
While the parameterization of the rectangular bounding box
is the same with Faster-RCNN [15], we adopted Eq. 7 for
our encoded polygon.

txm(i) = (xm(i) − xam(i))/Wa

tym(i) = (ym(i) − yam(i))/Ha

tw(i) = (w(i) − wa(i))/Wa

th(i) = (h(i) − ha(i))/Ha

For i = [0, N/2)

tdxm( j) = (dxm( j) − dxam( j))/Wa

tdym( j) = (dym( j) − dyam( j))/Ha

For j = [1, N/2)

where Wa = (xamax − xamin)

Ha = (yamax − yamin)

(7)

where y and ya represent the encoded predicted polygon
(also the encoded ground truth polygon) and encoded anchor
polygon, respectively (same applies to x , h, w, dy, and dx).

6.3 Implementation details

All of our experiments and evaluationswere ran on amachine
with Intel 6-core Xeon chip, 64 GB of RAM, Nvidia Titan
X Pascal Architecture, and Ubuntu OS v16.04. All of our
experiments and models were implemented with the Tensor-
flow (version 1.9) object detection API [48]. Parameters or
variables that are not discussed in this section are consistent
with [48].

6.3.1 Feature extractor

Our model adopted Inception-Resnet-V2 [49] as the feature
extractor.

6.3.2 Anchor boxes

As suggested in [33], text in the wild is generally smaller and
has wider aspect ratio; hence, we define the scales and aspect
ratio of our anchor boxes as (0.0625, 0.125, 0.25, 0.5, 1.0)
and (0.5, 1.0, 2.0, and 3.0), respectively. As mentioned in
Sect. 6.2, we converted the anchor boxes in the second stage
(which are proposal boxes essentially) to anchor polygons
by merely adding a middle point between the corresponding
vertices. This is essential so that it can be parameterized with
our ground truth in the polygon format.

6.3.3 Loss function

The optimization of Poly-FRCNN is a multi-task problem.
For the regionproposal network (RPN)module, the loss func-
tion is consistent with Faster-RCNN’s [48], while the loss
function of the polygon classifier network (PCN) module is
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formulated as Eq. 8.

L(pi , ti ) = α

N

∑

i

Lcls(pi , p
∗
i ) + β

N

∑

i

p∗
i L reg(ti , t

∗
i ) (8)

where i is the index of anchor in a mini-batch, while pi and
p∗
i are the predicted probability and the ground truth label of

anchor i being a text instance. On the other hand, ti represents
the predicted parameterized target as described in Eq. 7 and
t∗i is its ground truth counterpart. N is themini-batch number,
which acts as a normalizer for both of the loss functions. α
and β are the regularization terms to control the weightage
of both loss terms, which are set to 1 and 2, respectively, as
studied in [48]. Meanwhile, Lcls and L reg are formulated in
Eqs. 9 and 10, respectively.

Lcls(p, p
∗) = −(p∗ log(p) + (1 − p∗) log(1 − p)) (9)

LReg(ti , t
∗
i ) =

∑
i
smoothL1(ti − t∗i )

For i ∈ xm(0), ym(0), w(0), h(0),

dxm(1), dym(1), w(1), h(1),

dxm(2), dym(2), w(2), h(2) (10)

in which,

smoothL1(x) =
{

0.5x2 if |x| < 1 (11)

|x | − 0.5 otherwise, (12)

6.3.4 Training

All themodelswent through the same training schedule. They
were first initialized with the ImageNet-pre-trained weights.
The training schedule then starts with 100 K iterations on
SynthText, followed by another 100 K iterations on the real-
world data from COCO-Text. Finally, we fine-tuned them
with the targeted training set5 for another 50 K iterations.
The initial learning rate on the largest dataset (SynthText) in
this training schedule was set to 0.003, then it was reduced
0.0003 since the starting of the training on COCO-Text and
remained the same for the rest of the training.

100 K images from SynthText were randomly chosen for
the first stage of the training. Then, approximately 13K train-
ing images fromCOCO-text that have at least one legible text
instance were used during the second training stage. Lastly,
1255 images from the Total-Text training set were used for
the fine-tuning stage.

5 Apart from CUTE80 and CTW1500, which we used the model fine-
tuned on Total-Text only.

Table 3 Evaluation results on ICDAR2013

Methods Precision Recall F-measure

FOTS [50] 0.95 0.90 0.93

R2CNN [33] 0.94 0.83 0.88

DIRECT [41] 0.92 0.81 0.86

TextBoxes[39] 0.89 0.83 0.86

Seglink [38] 0.88 0.83 0.85

RRPN [34] 0.90 0.72 0.80

Poly-FRCNN-3 0.90 0.83 0.86

The bold values represent the best results in their respectively compar-
ison

Table 4 Evaluation results on ICDAR2015

Methods Precision Recall F-measure

FOTS [50] 0.88 0.92 0.90

R2CNN [33] 0.86 0.80 0.83

DIRECT [41] 0.82 0.80 0.81

RRPN [34] 0.73 0.82 0.77

Seglink [38] 0.73 0.77 0.75

DMPNet[37] 0.73 0.68 0.70

Poly-FRCNN-3 0.80 0.66 0.73

The bold values represent the best results in their respectively compar-
ison

6.3.5 Testing

This process was kept as simple as possible. No post-
processing or multi-scale were used apart from the standard
non-maximum suppression (NMS).

6.4 Evaluation

6.4.1 Dataset

Weevaluate theperformanceofPoly-FRCNNon ICDAR2013,
ICDAR2015, and Total-Text. ICDAR2-013 and ICDAR2015
were chosen to demonstrate the performance of Poly-
FRCNN on horizontal and multi-oriented text, respectively.

6.4.2 Evaluation Protocol

The performance reported on ICDAR2013 was evaluated
using the recommendations (i.e., tp = 0.4 and tr = 0.8)
in DetEval protocol [16] for a fair comparison with the state-
of-the-art solutions. For Total-Text, we used tp = 0.6 and
tr = 0.7 as described in Sect. 4. Meanwhile, standard 0.5
IoU threshold for Pascal VOC evaluation method was used
for the results on both ICDAR2015 and Total-Text.
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Fig. 19 Detection results of Poly-FRCNN-3 on ICDAR2013 (1st row),
ICDAR2015 (2nd row), and Total-Text (3rd row)

6.4.3 Performance analysis

Tables 3 and 4 show that the performance of Poly-FRCNN-
3 (our best performing model) is on par with contemporary
state-of-the-art works like [33,34,37–39]. Example of Poly-
FRCNN-3 performance can be seen in Fig 19.

Table 2 tabulates the performance of Poly-FRCNN on
Total-Text. In order to measure the effectiveness Poly-
FRCNN against of text of different orientations, especially
curved text, we created two subsets of Total-Text with the

orientation annotation. The ‘curved-set’ in Table 2 consists
of only curved text; while the ‘non-curved-set’ includes only
horizontal and multi-oriented text.

6.4.4 Box-FRCNN versus Poly-FRCNN-3

Box-FRCNN is basically a Faster-RCNN (it produces axis-
aligned box as output, hence the ‘box’ notion),whichwe built
Poly-FRCNN on. This comparison is made to demonstrate
the effectiveness of our polygon predicting model against the
axis-aligned predicting model in detecting text of different
orientations. Poly-FRCNN-3 outperformed its box predict-
ing counterpart by 0.25 (0.19) in terms of F-measure in
general. Their performance difference became much more
significant on the curved text only subset of Total-Text, with a
gap of 0.46 (0.36). This result demonstrates the effectiveness
our polygon extension. Such difference is also displayed in
Fig. 20, where the detection output of Box-FRCNN appeared
to be loosely binding the text region; while Poly-FRCNN-3
is capable of binding all text regions tightly regardless of its
orientation.

6.4.5 Poly-Baseline versus Poly-FRCNN-3

Poly-Baseline on the other hand is the model integrated with
the polygon encoding method as mentioned in Sect. 6.1 by
[13]’s CTD model. Poly-Baseline was implemented to have
the exact same architecture as our proposed Poly-FRCNN

Fig. 20 Comparison between Box-FRCNN (1st row), Poly-Baseline (2nd row), and Poly-FRCNN-3 (3rd row)
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except for the encoding module, hence making it a fair com-
parison for the encodingmethod.Aswe can see inTable 2, the
performance of Poly-FRCNN-3 is superior to Poly-Baseline
in all metrics on Total-Text. The largest difference between
the two can be observed in the curved-set category, with a
gap of 0.24 (0.21) in terms of F-measure. As observed in Fig.
20, Poly-Baseline did not bind the text regions as precise as
our proposed Poly-FRCNN-3, proving the superiority of our
proposed Text Line encoding method.

6.4.6 Poly-FRCNN-5

The performance of Poly-FRCNN-5 drops slightly by 0.05
(0.03) in terms of F-measure (Table 2) in compared to Poly-
FRCNN-3 in the wholeset category. As we can see in Fig. 21,
the detection outputs of Poly-FRCNN-5 are smoother with
more vertices. However, it comes with the cost of smaller
error margin than Poly-FRCNN-3 (i.e., more prone to error
due to the higher number of vertices to be regressed), which
we attribute as the cause of the loss in performance.

6.4.7 Inference time

The time performance of our proposed models is recorded
as well. Across the 300 testing images of Total-Text, Poly-
FRCNN-3 runs at 3.3 FPS; while Poly-FRCNN-5 runs at
3.257 FPS.

Fig. 21 1st row: Poly-FRCNN-3; 2nd row: Poly-FRCNN-5. Poly-
FRCNN-5’s output has more vertices, hence, is able to bind curved
text with larger curvature more tightly

Table 5 Evaluation Result of Poly-FRCNN-3 on CUTE80 and
CTW1500

Dataset Precision Recall F-measure

CUTE80 0.66 0.64 0.65

CTW1500 0.86 0.62 0.72

6.4.8 Performance on other curved text datasets

Apart from Total-Text, we have also evaluated our pro-
posed model on other curved text datasets—CUTE80 and
CTW1500. Poly-FRCNN-3 achieves 0.65 and 0.72 in terms
of F-measure on the mentioned datasets, respectively (Table
5). Note that there was an inconsistency in the annotation
granularity in CUTE80 (i.e., mixture of word level and line
level), hence we reannotate them to word level6 before eval-
uation. Besides, we found that there are some overlapping
images between the training set of Total-Text and CUTE80.
Hence, we fine-tuned Poly-FRCNN-3 on a new subset of
Total-Text, with those duplicated images removed from the
training data. The result of our proposed model on CUTE80
is similar to the curved-set subset of Total-Text (0.65 vs 0.67
in terms of F-measure with DetEval), mainly due to the fact
that most of the text instances in CUTE80 are curved. As
for CTW1500, the authors provided us a new set of ground
truth7 with Latin script being annotated in word level, which
we used to evaluate our model. Since both of the ground
truths are newly obtained and introduced in this paper, our
method can serve as a baseline for both of the datasets.

6.5 Cross datasets experiment

In order to determine the impact of Total-Text on detec-
tion models, we performed a cross dataset experiment.
The datasets involved in this experiment are SynthText,
COCO-Text, ICDAR2013, ICDAR2015, and Total-Text.
Poly-FRCNN-3 is the model used in this investigation. The
training details of this experiment is the same as Sect. 6.3.
Table 6 tabulates the finding of this experiment. Below are
some observations we obtained from this experiment.

6.5.1 Pretraining on SynthText and COCO-Text only

The model trained on SynthText and COCO-Text only
(1st row in Table 6) generally performs worse than the
other models with a fine-tuning process on the respective
datasets. While the model’s performance is still competitive
on ICDAR2013 and ICDAR2015 even without fine-tuning
on them; its performance on Total-Text is the worst, with a
large gap of 0.24 in terms of F-measure in compared to the
best performing model (4th row). The main reason is that
SynthText and COCO-Text use axis-aligned box as ground

6 The new ground truths will be released in the same GitHub page as
well.
7 Credit to Baidu Inc. who helped in re-annotating the ground truth in
such format. We (the authors of CTW1500 and us) reached a common
ground that Latin scripts should be annotated in word level while Chi-
nese scripts should be annotated in line level due to the nature of both
languages.
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Table 6 Cross dataset experiment with Poly-FRCNN-3

Datasets ICDAR2013 ICDAR2015 Total-Text

Pretraining Fine-tuning P R F P R F P R F

SynthText –> COCO-Text – 0.81 0.83 0.82 0.70 0.59 0.64 0.51 0.47 0.49

SynthText –> COCO-Text ICDAR2013 0.86 0.82 0.84 0.79 0.52 0.62 0.56 0.42 0.48

SynthText –> COCO-Text ICDAR2015 0.89 0.75 0.81 0.80 0.66 0.72 0.67 0.52 0.58

SynthText –> COCO-Text Total-Text 0.90 0.83 0.86 0.80 0.6 0.68 0.78 0.68 0.73

The bold values represent the best results in their respectively comparison

truth, hence the model has no data to learn in predicting
polygon-shaped detection region.

6.5.2 Fine-tuning on ICDAR2013 and ICDAR2015

The second and third models (2nd row and 3rd row, respec-
tively, in Table 6), after being fine-tuned on ICDAR2013
and ICDAR2015, have seen improvements on their target
datasets. However, only the third model seen an improve-
ment when being evaluated on Total-Text, with an increment
of 0.09 in terms of F-measure in compared to the first model.
ICDAR2013 consists of mostly horizontal text and uses axis-
aligned box as ground truth, it is not a surprise to see that
fine-tuning on it does not help in improving its performance
on Total-Text. ICDAR2015 on the other hand has more data,
withmulti-oriented text included in their collection, didman-
age to boost the performance of the model on the proposed
dataset.However, it uses quadrilateral as the detection ground
truth, which again is not capable of handling the orientation
diversity of Total-Text, especially curved text instances.

6.5.3 Fine-tuning on Total-Text

The fourth model (4th row in Table 6), after being fine-tuned
on Total-Text, is the highest scoring model on ICDAR2013
and Total-Text, and ranked 2nd on ICDAR2015. While the
model was fine tuned only on Total-Text, it achieves good
result on the other two datasets, which demonstrates that
Total-Text’s data is diversified enough for the generalization
of the model.

6.6 State-of-the-art analysis

Since the publication of [12], several works have attempted
to address the curved text detection problem [13,44,45,52].
This section aims to compare these latest works and provide
readers a general idea about the direction that the community
is currently moving toward.

Lyu et al. [45] proposed an end-to-end trainable text spot-
ting framework that is capable of handling text of arbitrary
orientation. They built theirmodel on top of theMask-RCNN
framework [54] and leveraged its strong segmentation abil-

ity to segment text region from background to produce a
binary mask (as illustrated in Fig. 2b). Consequently, they
calculate the contour region of the mentioned binary mask to
produce the spatial coordinates of polygon vertices as final
detection result. Similarly, Long et al. [52] leveraged FCN
in their proposed model. The novelty of their work lies in
the geometry properties maps prediction on top of the text
region segmentation maps. The authors then proposed sev-
eral heuristics algorithms which make use of these geometry
properties (i.e., central axis points, radii, and orientations)
to generate final polygon vertices prediction. Segmentation-
based methods usually have issues in separating different
text instances in their binary map output. Motivated by this
problem, [44] model their network to learn ‘direction field’
which provides the information on how far away is one par-
ticular text pixel to non-text pixel. The proposed method,
TextField, utilizes this information to refine the binary output
mask and produce final detection result. Dai et al. [53]’s pro-
posed framework is also a segmentation-based method. The
framework places emphasize on fusing lower-level feature
maps into top-level part of the network, which has proven to
be effective across various datasets. However, we notice that
the last part of [53]’s method is supposed to produce a min-
imum quadrilateral from the segmentation mask as the final
detection output. The method was not presented clearly, and
we are unsure whether did the authors alter their algorithm
(i.e., to produce polygon-shaped output) when evaluating on
Total-Text. Sun et al. [51] proposed an end-to-end trainable
text spotting frameworkwhich is robust against text of all ori-
entations. We have evaluated most of these methods with our
proposed threshold values indicated in Sect. 4 and tabulated
them in Table 7. Apart from the result from the whole testing
set, we have evaluated themon the ‘curved’ and ‘non-curved’
subsets of the proposed dataset for a better comparison.

7 Conclusion

This paper introduces a new scene text dataset, Total-Text,
featuring themissing element in current scene text datasets—
curved text. We believe that curved text should be included
as part of the ‘multi-oriented’ text detection problem. While
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Table 7 Compilation of latest works on Total-Text, evaluated with DetEval (our proposed thresholds) and Pascal VOC (in bracket)

Methods Wholeset Curved-set Non-curved-set

P R F P R F P R F

TextNet∗[51] 0.68 (–) 0.60 (–) 0.64 (–) – – – – – –

TextSnake∗[52] 0.83 (–) 0.75 (–) 0.78 (–) – – – – – –

FTSN∗[53] − (0.85) − (0.78) − (0.81) – – – – – –

CTD [13] 0.77 (0.81) 0.74 (0.78) 0.75 (0.79) 0.70 (0.72) 0.79 (0.83) 0.74 (0.77) 0.71 (0.79) 0.69 (0.74) 0.7 (0.77)

MSR [46] 0.81 (0.73) 0.73 (0.51) 0.77 (0.61) 0.66 (0.59) 0.76 (0.56) 0.70 (0.57) 0.79 (0.74) 0.66 (0.48) 0.72 (0.58)

Mask-TextSpotter [45] 0.83 (0.87) 0.75 (0.80) 0.79 (0.84) 0.83 (0.86) 0.85 (0.87) 0.84 (0.86) 0.77 (0.84) 0.67 (0.74) 0.72 (0.79)

TextField [44] 0.83 (0.80) 0.82 (0.82) 0.83 (0.81) 0.77 (0.73) 0.87 (0.87) 0.82 (0.79) 0.79 (0.79) 0.77 (0.78) 0.78 (0.79)

∗Did not receive author’s model’s detection output
This table tabulates methods which were designed with curved text in consideration only

it is under-researched at the moment, we hope the availabil-
ity of Total-Text, with all other supporting elements we have
presented in this paper, could change this scenario. Moving
forward, we believe that the regulated polygon ground truth
template and the proposed aided scene text detection anno-
tation tool, T 3, could help in providing a better scene text
dataset in terms of quality and scale. Last but not least, we
have presented a text detection baselinemodel for Total-Text,
Poly-FRCNN, which has demonstrated its effectiveness in
detecting text of all orientations.
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