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ABSTRACT

Recent works have shown success in generating music using a
Variational Autoencoder (VAE). However, we found out that
the style of the generated music is usually governed or limited
by the training dataset. In this work, we proposed a new for-
mulation to the VAE that allows users to condition on the style
of the generated music. Technically, our VAE consists of two
latent spaces - content and style space to encode the content
and style of a song separately. Each style is represented by
a continuous style embedding, unlike previous works which
mostly used discrete or one-hot style labels. We trained our
model on public datasets that made up of Bach chorales and
western folk tunes. Empirically, as well as from music theory
point of view, we show that our proposed model can generate
better music samples of each style than a baseline model. The
source code and generated samples are available at https:
//github.com/daQuincy/DeepMusicvStyle

Index Terms— music synthesis, deep learning, style
transfer

1. INTRODUCTION

The advancement of deep neural networks (DNN), in partic-
ular Variational Autoencoder (VAE) and Generative Adver-
sarial Networks (GAN) is blurring the line between art and
science. Recent efforts have demonstrated the ability of DNN
to generate various forms of creative contents with decent if
not good quality, such as artistic images [1], poems [2] and
music [3]. As a result of this, musicians and artists have been
able to leverage on the ability of DNN to extend their ideas
to produce creative contents [4,5]. These deep learning appli-
cations could be better utilized if the users could have more
controls over the model. In this paper, we explore the idea of
a generative model that can generate symbolic music condi-
tioned on a compositional style, selected by the user.

In the visual domain, researchers have shown success in
developing generative models that allow users to specify the
style, content and even varying subtle details of the gener-
ated image [6, 7]. Sequence generation, in particular music
generation, is however still slightly lagging behind the visual
counterpart. Recent advances have shown some success in

Fig. 1. Our proposed model architecture. zc embeds the “con-
tent” of the input song while zcat is a categorical variable de-
noting the style. The embedding for the respective style is
then being retrieve from the style codebook, yielding zs. Fi-
nally, zc and zs are concatenated together to form z for the
decoder to synthesize a new song.

music generative models that allow user control [8–11]. For
instance, most of these models are interactive in such a way
that it allows conditioning on attributes such as chord pro-
gression, note density and rhythmic style. The compositional
style of the generated music, however, is mostly governed
(limited) by the type of music in the training dataset, such
as Bach chorales, pop music and jazz music.

To effectively allow users to condition on the style of the
synthesized music, our model innovates two key elements.
First, our model consists of a separate latent space that con-
sists of a content space zc and a style space zs as illustrated in
Fig. 1. The former is encoded with content of the songs such
as the note pitches used and its duration, while the latter is to
embed abstract information of the compositional style. Sec-
ondly, and crucial to guide our model to generate songs of a
specific style, is the proposal of continuous style embeddings,
in contrast to discrete labels. Discrete labels are usually one-
hot vectors fed to the model at generation time as conditions,
in our solution, we employ a continuous embedding instead.

Empirically, we show the ability of our model to gener-
ate music with a specific style, in comparison with conven-
tional solutions (Table 2 and Fig. 5). Also, we explain from a
musical theory point of view that our generated music mim-
ics closely to the conditioned style (Fig. 3). Nonetheless, we
demonstrate the ability of our model to perform musical style
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transfer (Table 3-4, Fig. 6). Due to nature of this work, we
encourage readers to listen the audio samples provided here1.

2. RELATED WORK

Generative models have always been a field of interest for
researchers, but the general formulations of VAE and GAN
do not have much interactive properties that allow users to
control the content or attributes of the generated output. Re-
cently, [1, 6, 7, 12, 13] extend the original GAN idea and de-
velop new formulations that provide users a way to control the
content of the output. Technically, there are two ways to train
a model that allows user control. Formerly, semantic labels
are provided to the model during training and they are used
as conditions at generation time. These models are trained in
either supervised or semi-supervised mode. While the latter
is to train a model to perform unsupervised clustering on the
data. At generation time, new samples are generated by sam-
pling from different clusters. Our work falls on the former.

Earlier works in symbolic music generation are usually
based on“next step prediction”, where a priming melody is
given as a prior and the model generates a continuation of it
[3,14]. Due to this, the style of the output music is limited by
the training dataset. For instance, [15, 16] can only generate
music in the style of Bach, and not others as they were trained
with Bach’s chorales. In contrast, our work is able to provide
users the ability and flexibility to condition on any musical
style for their generated music.

Based on our knowledge, recent advances have also
shown limited success in allowing user the flexibility to con-
trol over the style of generated music. In [17], the authors
presented their VAE model that is able to generate music con-
ditioned on attributes such as note density, diatonic scale and
note syncopations. These conditions are extracted as attribute
vectors after training. Payne [18] prepended composer and
instrumentation tokens to the samples before training. The
tokens are then used at generation time to condition the gen-
erated music. Simon et al. [11] extended the idea from [17]
and proposed a model that can generate music conditioned
on chord progressions. As a summary, these aforementioned
works are fairly limited since it only allows the control over
musical attributes such as rhythmic patterns and chord pro-
gressions. The idea of conditioning on the musical composi-
tional style as to our proposed work is still less explored.

Related most closely to our work is MIDI-VAE [19],
where a VAE model was trained to model the dynamics and
instrumentation of different genres of music. The model can
then perform neural style transfer between different genres
of music, for example from classical to jazz. Our work re-
sembles the framework suggested in [19], however, our work
modifies this framework considerably where we convert the
softmax style latent space into a continuous style embedding.

1https://bit.ly/3b5QYKW

3. METHODOLOGY

3.1. Data Representation

The dataset we used is built from MIDI files. We extended
the idea of [10, 20] and encoded the MIDI event messages in
a list of vectors. Each sample is split into a segment of 4 bars,
and each of this segment is a list of notes represented in vec-
torX ordered by note start times and in ascending pitch order
for chords. Each vector X contains 3 features: (P, dt,D). P
is a one-hot tensor P ε {0, 1}nT ,89, where nT is the number
of notes in the segment and 89 is the total number of distinct
pitches plus an additional silent pitch to represent the end of
a 4 bar phrase. dt is the amount of time in beats after the pre-
vious note is played and before the next note is played. We
quantized a whole note (4 beats) into 33 bins and represent dt
as a one-hot tensor dt ε {0, 1}nT ,33, where dt=0 means the
note is played together with the previous note, which repre-
sents a chord. D is the duration in beats of a note being held,
and it is encoded similar to dt,D ε {0, 1}nT ,33. The quantiza-
tion of timing information into 33 bins allows us to model all
common note lengths in musical theory (semibreve, minim,
crotchet, etc. and their dotted counterpart) and also complex
note lengths like ornaments and triplets.

3.2. Model Architecture

3.2.1. VAE Revisited

Our model adopted the sequence-to-sequence VAE [17, 19]
that consists of two networks, namely the encoder and de-
coder. Both the encoder and decoder are modeled as vari-
ants of recurrent neural networks (RNN). The VAE imposes
a prior distribution p(z) on the latent variables z, while the
encoder learns an approximated posterior q(z|x) = N (µ, σ).
Due to the sampling process, the gradients of this network
is intractable. As such, the reparametrization trick is used,
where z = µ + εσ. µ and σ are the mean and standard de-
viation of the latent distribution, both are modeled by the en-
coder. ε is a random Gaussian noise. The decoder p(x|z)
learns to reconstruct the input. The general formulation of a
VAE is as follows:

LV = Lr − βDKL(q(z|x)||p(z)) (1)

where Lr is the reconstruction loss, which in our case it is
the cross-entropy between the reconstructed output X̃ and X .
The second term is the Kullback-Leibler (KL) divergence be-
tween the posterior and prior distribution. Optimizing the KL
term will force the latent distribution to be closed to a Gaus-
sian distribution. The β term is a weight to balance the trade-
offs between the reconstruction and KL term.

3.2.2. Proposed Method

Our proposed model is depicted in Fig. 1, where the dotted
lines path represents a vanilla VAE for reference. To learn
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the style of a music, in our proposed architecture, our latent
space z is split into two parts, zs and zc. The idea behind this
is that the encoder encodes the ”content” of an input music,
such as note pitches and note lengths into zc, while zs will be
optimized to contain the ”style” information that guides the
decoder to generate a music in a certain style.

To obtain zs, our encoder first generates a one-hot cate-
gorical variable zcat ε {0, 1}s, where s denotes the number
of styles in the dataset. Due to the nature of discrete vari-
ables, the gradients of zcat is intractable. For this, we adopt
the Gumbel distribution trick [21] formulated as:

G = − log(− log(Unif [0, 1])) (2)
zcat = softmax((α+G)/τgumbel) (3)

where G is the Gumbel noise, α is the logits for zcat from
the encoder and τgumbel is the temperature. The temperature
is a hyperparameter, as it approaches zero, zcat becomes a
one-hot vector.

We then introduce a learnable style codebook that ran-
domly initialize at the start of training. The codebook is used
to retrieve style embeddings based on zcat. Our codebook
consists of s embeddings, each with a dimension of dims,
which gives it a size of s× dims. To obtain zs, we perform a
matrix multiplication between zcat and the style codebook:

zs = zcat ⊗ style codebook (4)

zs will then has the shape of dims. Thus, we can ensure
that different songs of the same style will have the same style
embeddings zs. Also, in order to ensure our model learns
the style correctly, zcat is optimized with style labels y using
cross-entropy:

Ls = −
S∑
s=1

y log zcat (5)

where s is the number of styles in the dataset.
Our zc is similar as to the original latent representation

z = µ + εσ described in Section 3.2.1. Then, zs and zc are
concatenated to form z′. Finally, z′ is passed through a linear
layer to form the initial state of the decoder RNN.

Posterior collapse is an issue where the decoder ignores
the latent vectors, which in our case is zc, resulting in the KL
term dropping to zero and rendering zc useless. This issue is
common in a seq2seq VAE setting due to the nature of the au-
toregressive decoder [22]. For this, we adopted µ-forcing [23]
which adds a regularizing term Lµ to the VAE formulation:

Lµ = max(0, βµ −
1

2N

N∑
n=1

(µn − µ̄)
T

(µn − µ̄)) (6)

where βµ is a margin and N is the batch size. µ is the mean
vector modeled by the encoder to parameterize the distribu-
tion of zc. The term Lµ forces the sample variance of µ to

Fig. 2. Samples from (a) JSB and (b) NMD public datasets.

be controlled on the level of βµ which maintains the mutual
information of X and z′.

As a whole, the final formulation of our proposed model
is as follows:

L′
V = Lr − βDKL(q(zc|x)||p(zc)) + Ls + Lµ (7)

At generation time, we can specify zcat according to the
wanted style, sample zc from a Gaussian distribution and feed
them to the decoder to generate a new song.

4. IMPLEMENTATION DETAILS

4.1. Dataset & Pre-Processing

In this paper, we employ two public music datasets that have
been studied heavily: Bach Chorales (JSB) dataset and Not-
tingham Music Database (NMD). The JSB dataset contains
370 four-part chorales harmonized by Johann Sebastian Bach
while NMD contains over 1200 American and European folk
tunes. Both JSB and NMD have very distinct style, and sam-
ples are depicted in Fig. 2. The JSB chorales are written in
four parts: soprano, alto, tenor and bass. As can be seen in
Figure 2(a), the music is formed by chords of four notes, with
passing notes in between. In contrast, the folk tunes in the
NMD consist of a simple monophonic melody line, accom-
panied by a chord sequence. The data are converted into the
representation described in Section 3.1, split into training and
testing sets and each song is split into non-overlapping seg-
ments of four bars.

4.2. Model Hyperparameters

Similar to [24], our encoder is a bidirectional HyperLSTM
[25] layer and the decoder is a unidirectional HyperLSTM
layer. Although LSTM is a more popular choice, in our ex-
periments, we show that in Table 1 the HyperLSTM cell has a
better performance when handling long, complex sequences
like music. The LSTM model seems to overfit the data signif-
icant earlier as opposed to the HyperLSTM model during the
training phase.

The style codebook dimension is set to 80 and the dimen-
sion of zc is set to 120. We applied dropout to both the en-
coder and decoder with rates of 0.5 and 0.2 respectively. βµ



Model pitch, P dt duration, D KL

LSTM 0.77 0.94 0.81 0.94
Proposedxs 0.21 0.63 0.45 1.10
Proposed 0.82 0.96 0.83 1.13

Table 1. The reconstruction accuracy and KL divergence on
the test set of models of various settings.

Fig. 3. Generated music samples by the proposed model in
the style of (a) JSB and (b) NMD.

is set at 1.3 and KL weight β is annealed from 0 to 0.8. Adam
optimizer is used with a learning rate of 5e-4. All these hy-
perparameters are set empirically, and trained for 400 epochs.

5. EXPERIMENTAL RESULTS & DISCUSSION

5.1. Reconstruction Performance

Table 1 presents the accuracy of the test set reconstruction and
KL divergence of our proposed model in various settings. The
LSTM model has the same settings as the proposed model ex-
cept that the RNN cells used in both the encoder and decoder
are LSTM instead of HyperLSTM. It can be seen that the pro-
posed model outperforms the LSTM model, especially in re-
constructing the pitch. Furthermore, the proposed model is
able to better utilize zc to reconstruct the input, as justified by
the significant higher KL term compared to the LSTM model.
To show the importance of the proposed zs, we replaced zs in
the proposed model with all zeros and then reconstruct the test
set. This model is denoted as proposedxs in Table 1. The poor
reconstruction performance proves that zs is indeed important
for the proposed model to reconstruct the input or generate
new music.

5.2. Style-conditioned Music Generation

Unlike most of the previous works that work on conditional
generative modeling [6, 12, 19], we did not feed the discrete
style representation zcat directly to the decoder. Instead, we
argue that a one-hot categorical vector does not sufficient in-
formation to guide the model to generate a musical sequence
of a specific style. Thus, we proposed a continuous embed-
ding using our ”style codebook” described in Section 3.2. To

Fig. 4. Generated samples by the baseline model in the style
of (a) JSB and (b) NMD.

Fig. 5. Comparison of the encoder classification scores on
musical samples generated by proposed and baseline models.

justify this, we trained a baseline model very similar to Midi-
VAE [19] that concatenates zcat directly to zc.

In this experiment, we first generate 500 music samples of
each style by sampling zc and feed in the respective zcat to the
model. Using the encoder as a classifier, we feed the gener-
ated output into it and the output zcat is taken as the classified
style. Table 5 shows the precision and recall score for the clas-
sification of each style of both models. The baseline model
scored lower than the proposed model. A significant amount
of JSB samples generated by the baseline model (Fig. 4 shows
a sample) were in the style of NMD, thus the lower precision
score on the NMD side. In contrast, our proposed model can
generate songs of either style with ease, samples are depicted
in Fig. 3. Note that the encoder is able to classify the style of
an input song with perfect accuracy as presented in Table 3.

Besides investigating the style of the generated samples
using a neural network, we conducted a simple qualitative
analysis as well. As illustrated in Fig. 2, from a musical
theory point of view, due to the four-part writting style, the
JSB dataset contains significantly more chords per segment
in contrast to the NMD dataset. In addition to that, songs in
the style of JSB will have a wider pitch range and thus will
contain more unique pitches per segment. In the top half of
Table 2, we compared the mean of the number of chords and
number of unique pitches per segment in the training dataset
(namely as “Training”) against the generated samples. It is
shown that the proposed model outperforms the baseline as
the values are much closer to the training dataset.



Samples # of chords # of unique pitch

JSB NMD JSB NMD
Training 16.20 5.13 20.10 13.83

Baseline 6.82 4.68 15.20 15.63
Proposed 13.94 4.94 21.48 16.68

Baselinetransfer 5.03 15.46 13.55 19.20
Proposedtransfer 13.84 5.33 19.12 16.29

Table 2. Comparing the mean number of chords and num-
ber of unique pitches per segment of each style to the gener-
ated samples and style transfer samples for each model. The
style transfer results are indicated by the subscript “transfer”.
Value that is closer to “Training” is better.

Model Before After

Baseline 1.0 0.95
Proposed 1.0 0.13

Table 3. A comparison of the accuracy of style prediction
before and after performing style transfer.

5.3. Style Transfer

In addition to music generation, we also tested the ability of
our proposed model to perform style transfer. In this case, we
reconstructed each song in the testing set with the different
zcat and the results are presented in the bottom part of Table 2.
It can be seen that even after style transfer, the samples of the
baseline model still retain the characteristics of the original
style. On the other hand, the samples of the proposed model
have the characteristics of the transferred style. Fig. 6 shows
the style transferred samples. Through a manual inspection
of the style transferred samples from the proposed model, we
observed that the key and the accidentals of the samples are
preserved after the style transfer. Although the note pitches
are preserved, it may be either reordered or transpose to a
higher or a lower octave and the duration may change as well,
in order to fit the target style. This observation proves that the
information of note pitches are stored in zc.

Table 3 shows the accuracy of the encoder predicting the
style of the songs in the testing set before and after style trans-
fer. It can be seen that after the style transfer, the encoder
performed poorly in classifying the samples generated by the
proposed model, indicating a successful style transfer. In con-
trast, the encoder classifies the style transferred samples of the
baseline model to its original style.

5.4. Style Information in zc

Disentangling features from the latent representation is one
of the popular method in the conditional generative modeling
literature [26–28]. We did not explicitly design the proposed

Model Before After

Baseline 0.97 0.94
Proposed 0.86 0.71

Table 4. Classification accuracy of style based on zc. Re-
sults are presented for samples of both models before and af-
ter style transfer.

Fig. 6. Samples of generated song after style transfer. (a)
Style transfer from JSB to NMD. (b) Style transfer from
NMD to JSB.

model in any way that forces it to only encode the style infor-
mation in the style embeddings and the remaining contents in
zc. Thus, it is still possible for zc to contain style information.
To investigate this, we trained a logistic regression classifier
on zc with y as target. The classification accuracy on the test-
ing set is presented in Table 4. It shows that zc of the baseline
model is more distinctive comparing to the proposed model
as indicated by the higher accuracy. The overall results show
that style information is still encoded in zc. The latent space
plot is presented in Fig. 7 and qualitatively, it can be seen that
the separation of clusters for JSB and NMD is quite obvious.

6. CONCLUSION

In this work, we proposed a modification to the vanilla
sequence-to-sequence variational autoencoder that allows
user to condition the style of generated output music. Our
model involves a continuous style embedding for each style
in the dataset. Through our experiments, we showed that
our proposed method outperforms the baseline which directly
feeds discrete style labels to the model similar to other works
in the literature. In future work, we aim to explore our pro-
posed method on other kinds of sequential data.



Fig. 7. Latent space plot of zc in 2D with t-SNE.
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