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ABSTRACT

The usage of edge models in medical field has a huge im-
pact on promoting the accessibility of real-time medical ser-
vices in the under-developed regions. However, the handling
of latency-accuracy trade-off to produce such an edge model
is very challenging. Although the recent Once-For-All (OFA)
network is able to directly produce a set of sub-network de-
signs with Progressive Shrinking (PS) algorithm, it still suf-
fers from training resource and time inefficiency downfall. In
this paper, we propose a new OFA training algorithm, namely
the Progressive Expansion (ProX). Empirically, we showed
that the proposed paradigm can reduce training time up to
68%; while still able to produce sub-networks that have ei-
ther similar or better accuracy compared to those trained with
OFA-PS in ROCT (classification), BRATS and Hippocampus
(3D-segmentation) public medical datasets.

Index Terms— Medical Image Analysis, Edge A.IL.

1. INTRODUCTION

Digital inequality issue in the under-privileged communities
is an on-going problem. For instance, in the rural area, it is al-
ways lack with telecommunication accessibility. At the same
time, for the past few years, we can notice that there is an in-
crease of deploying deep learning solutions via cloud services
especially in the medical domain with success stories. How-
ever, all these success stories came with a heavy price tag -
high computational cost and require advanced technologies.
Thus, research in lowering the model complexity, especially
in edge models is important to make the solutions available to
all. That is to say, we need the edge models to be able to work
in those low bandwidth or limited network coverage environ-
ments, e.g., health centers in rural area or portable medical
devices in a moving vehicle.

Recently, the Once-For-All (OFA) Network [1] that based
on Neural Architecture Search (NAS) framework showed that
it is able to train a trillion of Convolutional Neural Network
(CNN) subnetworks from a mother network at once. Then,
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Fig. 1. The Progressive Expansion (ProX) (below, our pro-
posed method) and the Progressive Shrinking (PS) (above, the
original method). *R = {r3,r2,r1}.

it employed Automated Machine Learning (AutoML) algo-
rithms to search for a best-fit (latency-accuracy trade-off) con-
figuration based on different deployment scenarios (CPU la-
tency). Technically, the mother network is trained with Pro-
gressive Shrinking (PS) algorithm where the training starts
from the largest configuration and gradually shrinking the net-
work across 4 dimensions (i.e. input resolution, kernel size,
depth and width). Although the searching complexity is re-
duced under this OFA framework, the training complexity
with the PS algorithm is still a major concern when prepar-
ing the mother network. For example, one of the most obvi-
ous drawback of this shrinking paradigm is - (i) not resource
friendly and (ii) requires a longer training time. This is
because the training of the network must start from the high-
est (best) configurations, which in turn requires the ultimate
training resource planning i.e., GPUs. Besides that, training
with the largest network at start will also expose the model
to the risk of over-parameterizing and subsequently overfits
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the models, especially for medical imaging datasets which are
usually smaller in size and prone to noises [2,3]. Not the
least, the mother network trained with PS has limited scal-
ability because the candidate architecture configurations are
bounded to [archmin, archmaqz|. Thatis, if the network needs
to be expanded (when more training resources or datasets are
acquired), the network will have to repeat the training again.
In this paper, we propose a novel training algorithm for
OFA, namely the Progressive Expansion (ProX) as an alterna-
tive to the PS training method as shown in Fig. [T} In brief, our
solution is a reverse paradigm to Cai et al. [ 1] where we train
the OFA mother-net from the smallest configurations first,
and then gradually expand it, as oppose to training the largest
network first and shrink the configurations. Empirically, we
show that our proposed training paradigm is (i) shorter in
training time (Fig. [3) while maintaining the model accuracy
(Fig. [d); and (ii) possible to prevent over-parameterization on
smaller size and lower dimension medical datasets (Fig. [6).

2. RELATED WORK

In order to reduce the model complexity, solutions such as
network pruning [4-7]], bit quantization [8-H10]], and NAS [11}
12] have been employed. NAS methods are more flexible
in comparison to the other two because NAS can search for
any possible configurations within the search space; while the
other two involve only in decreasing the parameters of the
network. However, the search time for conventional NAS is
rather slow due to the train-search process coupling, which
is inefficient when deploying models to various devices. The
recent OFA Network was introduced to tackle the time con-
straint by decoupling the train-search process. With OFA,
subnetworks can be sampled directly from the mother net-
work without re-training. However, the PS algorithm in OFA
requires a higher training resource, a longer training time and
prone to overparameterization. There are several works ex-
tending the OFA techniques or using similar training styles
such as the CompOFA [13]] and 3D-NAS [11]], but these meth-
ods are still bounded to training the largest configuration net-
work first, which have similar drawbacks as aforementioned.

In contrast, this paper is motivated by several expanding
paradigm works. For example, EfficientNets [14] was one of
the examples of growing the network using compound scal-

ing. Model expansion are also used in Lifelong Learning stud-
ies such as the Progressive Neural Network [15]] and the Dy-
namically Expandable Networks [|16]. In ProX, we follow
this paradigm and extended the use of expansion concept into
training the OFA mother network.

3. ProX TRAINING PARADIGM

This section details the proposed Progressive Expansion
(ProX) training paradigm as shown in Fig. [T} In brief, ProX
is very similar to PS, but refined in terms of order and inner
operations as described next. Herein, each stage is referred to
depth, width, kernel and resolution respectively as illustrated
in Fig. [2| while each phase is referred to the inner operations
in the respective stage.

3.1. Elastic Depth Expansion

First, we treat the convolution layers in the OFA network as a
section of depths, e.g., if the OFA mother-net is initialized
with 5 sequentially connected sections where each section
contains 4 layers, then the mother-net will have a minimum 5
to a maximum 20 layers of convolution blocks. Fig. 2] (Stage
1) shows the depth expansion steps within a depth section.
The depth expansion step is done simultaneously across all
sections in the mother network. Technically, we adopted For-
ward Thinking depth training [17.|18], but redesigned it from
training a single network originally to training a OFA mother
network. In order to do that, initially, we will train the OFA
mother-net with the smallest number of layers and all the re-
maining layers are skipped. That is to say, the training starts
with depth, d = 1 for all the depth sections. Next (phase 2),
the depth candidate set will be expanded to {d1, d2}. In this
phase, for instance, if d2 is sampled, the weights of d1 will be
frozen to reduce the training computation cost. The process
will iterate until the final layer is trained. Subnetworks with
different depth configurations can now be directly sampled
from the mother network.

3.2. Elastic Width Expansion

In the previous stage, the mother net was trained initially with
an initial width ¢ and the width multiplier candidate set {z1}.
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Fig. 3. Comparison of the training time for full OFA mother network trainings in 3 different datasets.

In other words, the network with the smallest width ¢ x 1 was
trained and the unused layers were skipped previously. Fol-
lowing that, in the second stage, we will train this depth ex-
panded OFA mother net with the expanded width multiplier
candidate set {«1,22}. If 2 is randomly sampled in an it-
eration, all layers within first ¢ x 2 channels will be trained
as shown in Fig. 2] (Stage 2). In contrast to the width manip-
ulation operation in SlimmableNet [19]], we do not iterate all
the width candidates at once, instead we gradually expand the
width candidate set from the minimum width and randomly
sample a width from the candidate set on every iteration.

3.3. Elastic Kernels Expansion

In ProX, alarger kernel is formed by stacking smaller kernels
inside it as depicted in Fig. [2] (Stage 3). Our idea is a small
kernel can be transformed into a larger kernel by padding the
trainable weights around it as to [20]. That is to say, techni-
cally, in this third stage, with the network already trained with
the smallest possible kernel size (usually 3x3 in the previous
Elastic Depth and Width Expansion stage), so for the first ex-
pansion, the kernel candidate set is expanded to {3x3,5x5}
where the 3x3 kernel will be padded with trainable zero ten-
sors to make it a 5x5 kernel. To focus on reusing and pre-
serving the content of the smaller kernels, the weights of the
inner kernels (3x3) will be frozen during the training. In other
words, only the outer part of the kernel is trainable. The same
operation will be repeated for a 7x7 or larger kernels, if any.
After training is completed, all kernels with varying sizes, ex-
panding from the innermost to the outermost, can be directly
sampled for inference.

3.4. Elastic Resolution Expansion

Generally, input image with a higher resolution or more pixel
count needs more Floating Point Operations (FLOPs) to com-
plete the convolution. For instance, convolving a 32x32 and
64x64 image will require 9,000 FLOPs and 38,440 FLOPs re-
spectively with a 3x3 kernels. In ProX, with the OFA network
already trained with the smallest image size possible since
Stage 1, e.g., 160x160 in this paper but not limited to. For
this final stage, to support a higher resolution like 192x192,
we could expand the resolution candidate set to {160, 192}.
The dataset generator will resize and generate images with

randomly chosen resolution from the candidate set. The op-
erations is same as to dealing with 3D volumes.

3.5. ProX OFA Model

In summary, the training algorithm of ProX is re-arranged
in the order of depth, width, kernels and resolution sequen-
tially as shown in Fig. It starts with the network initial-
ized with the lowes depth, width, kernels and resolution. At
then, ProX expands the weights of the network in a forward
(expanding depth), followed by upward (expanding channel
width on each depth) and outward (expanding kernels on
each channel) logic, respectively and finally increasing the
image resolution. Beside that, our training will also be aided
with Knowledge Distillation [21]], where each model from the
previous phase is a teacher network to partially supervise the
learning of the expanded dimensions. This is opposed to PS
where the teacher network is a maximum network.

4. EXPERIMENT SETUP AND RESULTS

To test the effectiveness of our proposed method, we have
chosen the two most common tasks in medical imaging - (i)
medical image classification and (ii) medical image segmen-
tation tasks. For the classification task, we implemented the
OFA network on the MobileNet architecture [22f]; while for
image segmentation task we implemented the OFA network
on 3D-UNet [23]]. The former experiment is conducted on
the Retinal Optical Coherence Tomography (ROCT) [24]
dataset, while the latter experiment is conducted on 3D Brain
Tumor Segmentation (BRATS) and 3D Hippocampus head-
and-body segmentation dataset from the Medical Decathlon
Dataset [235]]. In our experiments, both PE and ProX methods
were trained using the same number of epochs for a fair com-
parison. All models were trained and tested on 2*NVIDIA
Tesla P100 PCIe 16 GB GPUs with Adam optimizer. Cross
entropy loss was used for the classification task, meanwhile
Dice loss was used for the segmentation tasks. For the knowl-
edge distillation, we used the mean squared loss between the
direct outputs of the teacher and student nets.

'The lowest configuration here is for training a full OFA ProX model,
when setting up experiments for separate dimension as in Fig. B]and[6] the
minimum configurations are different with varying constant variables
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4.1. Training Time vs. Model Accuracy

Fig. 3] shows that ProX manages to reduce the training time,
ranging from 37% to 68% compared to PS. For instance in the
ROCT datasets, ProX (with and without mixing resolution)
can reduce the training time from 9 hours to just roughly 3.75
and 3 hours respectively, while similar improvements can be
observed in other datasets. In terms of model accuracy, to bet-
ter represent the actual distribution and scoring performance
boundary of the subnetworks at different latencies, we cre-
ated a bucket of latency groups with different latency ranges
as comparison. For each training method, we sample 150 sub-
networks with latencies correspond to the buckets and plot the
accuracy/Dice score performance (Fig. ). It is observed that
with a much shorter training time, ProX can produce subnet-
works with better accuracy than PS.

4.1.1. Mixed Resolution Ablation

Despite observing a faster training loss convergence with
ProX training, PS somehow converged better in the classifi-
cation tasks (Fig. [3). This result may indicates that random-
izing the resolution settings works better for classification
tasks. To further understand this, we conducted another set

of OFA model besides PS and ProX in full training to fur-
ther analyse the impact of using mixed resolution. With
this, we introduced ProX mixed-resolution (MR) and ProX
increasing-resolution (IR). We sampled a total of 11k subnet-
works from the OFA-ROCT-MobileNet and 5k each from the
OFA-BRATS-3D-UNet and OFA-Hippocampus-3D-UNet,
respectively. For ROCT dataset, we observe a mean accu-
racy scores of 94.16% (PS), 99.22% (ProX-MR) and 97.72%
(ProX-IR). For BRATS datasets, we have mean Dice scores
of 0.3792 (PS), 0.4235 (ProX-MR) and 0.4693 (ProX-IR).
Finally, for Hippocampus dataset, we have mean Dice scores
of 0.2464 (PS), 0.2866 (ProX-MR) and 0.4083 (ProX-IR).
Together with the latency buckets, these shows that gener-
ally ProX-MR produces better classifier CNN subnets, while
ProX-IR is better at segmentation CNN.

4.2. Over-parameterization

Fig. [6] shows the possibility of ProX in overparameterization
prevention. Each spike in the training graph represents an ex-
pand/shrinking process. Visually, it can be seen that as the
model stopped to improve when d > 1, the ProX training can
be terminated immediately on depth d = 1, avoiding in pro-
ducing redundancy depth and excessive parameters. As such,
together with ProX and the help of training monitoring tools
like TensorBoard, deciding when to terminate the expansion
under time and GPU memory concern is possible.

5. CONCLUSIONS

This paper proposes a reversed OFA Network training algo-
rithm, the Progressive Expansion (ProX) for medical imaging
tasks. ProX can achieve up to 68% training time reduction
compared to Progressive Shrinking, while producing higher
quality subnetworks. In future work, we hope to explore the
usability of ProX on other domains and extend the work to
support the open-source Intel OpenVINO™ platform.
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