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ABSTRACT

Nowadays, attention mechanisms have been widely adopted
in image captioning task due to its outstanding performance.
In this paper, we propose a Mask Captioning Network (MaC)
that consists of an object layer and a background layer to cap-
ture the objects and scene of an image, independently to gen-
erate a much richer sentence. To this end, we leverage on
Mask RCNN to detect the salient regions in pixel level in the
object layer; while, in the background layer, a CNN model is
used to encode the scene features. Experimental results show
that our model significantly outperforms baseline models and
achieves comparable results with the state-of-the-art methods
on MSCOCO and Flickr30k datasets.

Index Terms— Image captioning, Deep learning, Scene
understanding

1. INTRODUCTION

For the past few years, visual attention has been the de facto
solution in image captioning task to detect and attend salient
image regions for a much better sentence generation. For in-
stance, in a very recent work, Anderson et al. [1] proposed a
novel bottom-up and top-down attention mechanism to estab-
lish a closer link between the vision and language task by de-
tecting a set of salient regions using Faster R-CNN [2]. Sim-
ilarly, Yao et al. [3] also employed Faster R-CNN to detect
objects within images and explore the visual relationship be-
tween the objects in the images by constructing semantic and
spatial relation graphs for sentence generation. However, both
of these works [1, 3] only used the salient regions for caption
generation and the scene context of the images is excluded.

In [4], a new paradigm where a visual attention mech-
anism is employed with the used of selective search [5] to
identify salient image regions. Then, scene vectors are pre-
dicted separately and altogether with the salient regions fed
into LSTM so that the generated sentence is scene-specific.
However, the work has a complicated process to obtain both
the objects and scene vectors. That is to say, the visual re-
gions are first extracted by selective search and then follow
by a second process to train a classifier to select if the region
is good or bad. For the scene context, text topics of images are

MaC: A giraffe standing next to a fence in a zoo.
MaCmask: A giraffe standing in front of a crowd of people.
Baseline: A giraffe standing next to a wooden fence.

Fig. 1: It shows that our proposed model - MaC can generates
a much richer captioning in comparison to other variants.

first extracted using Latent Dirichlet Allocation, then follow
by training a multilayer perceptron to predict the topic vector.

In this paper, we propose a new framework (namely as
MaC - Mask Captioning network) that is similar to [4] but
with refinements. For instance, our encoder design is as to
[4], consisted of an object layer and background layer. How-
ever, we leverage on Mask R-CNN [6] to detect salient re-
gions in pixel level as to Fig. 1, and our background layer
only requires a CNN to encode the scene features. With the
Mask RCNN, our work has few advantages. First, we do not
require a second process (i.e to train a classifier) to select a
good region since Mask RCNN produce binary mask with de-
tection scores. So we can exploit the detection score to select
a good region. Secondly, the binary mask of Mask RCNN is
pixel level, eliminating all the background noises.

As a summary, the main contributions of this work are i)
we propose a new image captioning model that leverage on
Mask R-CNN to detect salient regions in pixel level to elimi-
nate all the background information, merely focus on the im-
age objects. ii) at the same, we also employ a much simpler
solution (i.e. CNN only) to generate the scene features. With
this, our proposed model can generate a much richer caption-
ing as illustrate in Fig. 1; iii) our method outperforms base-
line models and achieves comparable/better results with the
state-of-the-art methods (Section 3, Table 1-2).
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Fig. 2: Overview of the proposed framework. Our encoder
consists two layers: (i) mask layer and (ii) scene layer, and the
output is fed into the LSTM network for caption generation.

2. MASK CAPTIONING NETWORK

2.1. Overall Framework

Our proposed method follows the encoder-decoder frame-
work, where an encoder is used to encode an image into
image features and then feed into a decoder to generate cap-
tions as illustrated in Fig. 2. However in our encoder, as to
[4], it consists of two layers: an object layer that we named
as the mask layer and a background layer that we named
as the scene layer. The idea is to employ the mask layer to
focus on the image objects; and the scene layer to capture the
background of the image. Then we apply soft attention and
concatenate both features and feed them to LSTM model for
sentence generation.

2.2. Mask Layer

Technically, in the mask layer, we leveraged on Mask R-CNN
to produce a set of binary masks B and detection scores D,
where B = {bi}Ni=1 with N salient regions in image I , bi ∈
{0, 1}m×m denotes the m ×m binary mask for each salient
region and D = {di}Ni=1 with di ∈ R : 0 ≤ di ≤ 1. Then,
we generate the weighted mask Bw following:

Bw =

N∑
i=1

F3(bi)� di (1)

where � denotes the element-wise multiplication and F3(·)
represents the mask resize function. Our idea to generate
the weighted masks is to exploit the confidence level of each
mask in the image (i.e. the detection scoreD) to select a set of
good mask features rather than training a separate classifier as
to [4]. Finally, we encodeBw using a CNN model to generate
mask features M = fm(Bw � I) where fm(·) represents the
CNN encoder.

2.3. Scene Layer

The mask features M generated in the mask layer only focus
on the salient regions in the image and the background or the
scene of the image is excluded. Intuitively, the scene or back-
ground of an image is an invaluable context that can affect the
image scenario significantly. Imagine an image where a per-
son runs in a park, the caption could be A person is running in
a park. Otherwise, if the image is taken in a bank, the caption
could be A person is running in a bank. It can be noticed that
these two captions have very different meaning and perspec-
tive. The former can be interpret as a normal situation (“exer-
cising”), while the latter could be a suspicious/dangerous sit-
uation as people seldom run in a bank. In [4], the author used
a scene vector extractor to predict the scene vectors from the
visual appearances. In our work, we propose a much simpler
scene layer where we encoded using CNN only to generate
the scene features S.

Technically, image I is resized as to the input of CNN and
encoded to generate scene features S = fs(I) where fs(·)
represent the CNN encoder.

2.4. Sentence Generation

In the decoder, we concatenate the soft-attended mask fea-
tures M̂ and soft-attended scene features Ŝ before feed them
into LSTM at each time step t as:

xt = M̂ ⊕ Ŝ (2)

ht = LSTM(xt, ht−1,mt−1) (3)

p(yt|y1, · · · , yt−1, I) = F1(ht) (4)

where ⊕ represents concatenation, ht−1 is the previous
LSTM’s hidden state, mt−1 is the previous memory cell,
F1(·) is a nonlinear function that outputs the probability of
yt, p is the probability of next word yt with image I and
previous words y1, · · · , yt−1 to generate sentence.

Two different multi-layer perceptrons with softmax output
are used to generate two attention distributions αm, αs over
the mask features M and scene features S. The formula can
be represented as:

aM = F2((WMM)⊕ (WM,hht−1)) (5)

αm = softmax(Wα,ma
M ) (6)

M̂ =

k∑
i=1

αmi Mi (7)

aS = F2((WSS)⊕ (WS,hht−1)) (8)

αs = softmax(Wα,sa
S) (9)

Ŝ =

k∑
i=1

αsiSi (10)

where W denotes weights, F2(·) represents multi-layer per-
ceptron and k is the feature size. For simplicity, we do not
explicitly represent bias term in this paper.
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3. EXPERIMENTS

3.1. Dataset and Baselines

We conduct experiments on two popular image caption-
ing datasets: MSCOCO [7] and Flickr30k [8], containing
123,287 and 31,783 images respectively. For a fair com-
parison, we followed the widely used split in [9] for both
datasets: on MSCOCO, 113,287 images for training, 5,000
for validation and 5,000 for test; and for Flickr30k, 1,000
images for validation, 1,000 for test, and the rest for training.
We converted all the captions into lower case and truncated
captions longer than 20 words. For all experiments, we use a
fixed vocabulary size of 10,000 for both datasets.

To compare the efficiency of the proposed method, MaC,
we built two baseline models - the first one is implemented
based on the soft attention model as to [10] and we refer this
model as Baseline, and the second baseline is a mask layer
only encoder and we refer this model as MaCmask.

3.2. Implementation Details

In the mask layer: i) we use Mask R-CNN pretrained on
MSCOCO dataset, generate top 100 binary masks B and re-
move those with detection scores D less than 0.5. ii) The
image encoder in the mask layer is using ResNet-50 [11] pre-
trained on ImageNet [12] dataset. The mask features M are
extracted using ResNet-50 without fully connected layers, re-
sulting in 7 × 7 × 2048 dimensional outputs. For the scene
layer, we also used ResNet-50, pretrained on ImageNet with-
out the fully connected layers to extract the scene features.

In the decoder, we used LSTM as our language generator
and the dimension of the hidden layer and word embedding
are both set to 512. We implement our model based on Ten-
sorflow, and all experiments are trained by cross-entropy loss
using Adam [13] optimizer with mini-batch size of 32 and
dropout rate of 0.5. For the learning rate, we first train the
LSTM decoder using learning rate of 1e-4 for 8 epochs and
finetune the CNN with learning rate of 1e-5 up to 20 epochs.
For inference stage, we set the beam size as 3.

3.3. Compared Approaches

To verify the MaC model, we compared with the following
methods: (i) NIC [14] uses conventional CNN-LSTM based
model which only injects image into LSTM at the initial time
step. (ii) ATT-FCN [15] uses attributes as semantic atten-
tion to combine attributes and image in RNN for generating
caption. (iii) Hard-Attention & Soft-Attention [10], ”hard”
stochastic attention and ”soft” deterministic attention are used
as spatial attention on convolutional features of an image. (iv)
RA+SS [4] a work that similar to us utilizes visual attention
to adapt visual features and scene features into LSTM.

Table 1: MSCOCO: Comparison between the MaC and the
state-of-the-art methods, where B-N, M, R and C are short for
BLEU-N, METEOR, ROUGE-L and CIDEr-D scores.

Methods MSCOCO
B-1 B-2 B-3 B-4 M R C

NIC [14] 66.6 45.1 30.4 20.3 - - -
ATT-FCN [15] 70.9 53.7 40.2 30.4 24.3 - -
Hard-Attention [10] 71.8 50.4 35.7 25.0 23.04 - -
Soft-Attention [10] 70.7 49.2 34.4 24.3 23.9 - -
RA+SS [4] 72.4 55.5 41.8 31.3 24.8 53.2 95.5
Baseline 70.2 53.8 40.4 30.3 23.8 52.1 89.3
MaCmask 69.8 53.1 39.7 30.0 23.6 51.7 89.6
MaC (D=0.5) 72.3 56.0 42.6 32.4 25.0 53.7 96.8
MaC (D=0.4) 72.3 55.9 42.3 32.0 24.8 53.6 95.9
MaC (D=0.6) 72.2 55.9 42.5 32.4 25.0 53.6 96.7

Table 2: Flickr30k: Comparison between MaC and the state-
of-the-art methods, where B-N, M, R and C are short for
BLEU-N, METEOR, ROUGE-L and CIDEr-D scores.

Methods Flickr30k
B-1 B-2 B-3 B-4 M R C

NIC [14] 66.3 42.3 27.7 18.3 - - -
ATT-FCN [15] 64.7 46.0 32.4 23.0 18.9 - -
Hard-Attention [10] 66.9 43.9 29.6 19.9 18.46 - -
Soft-Attention [10] 66.7 43.4 28.8 19.1 18.49 - -
RA+SS [4] 64.9 46.2 32.4 22.4 19.4 45.1 47.2
Baseline 63.2 44.9 31.5 21.9 17.8 44.1 42.3
MaCmask 61.8 43.0 29.9 20.7 17.3 42.6 33.7
MaC (D=0.5) 64.7 46.2 32.5 22.7 18.5 45.0 43.4
MaC (D=0.4) 63.0 44.7 31.4 21.8 17.8 44.0 41.3
MaC (D=0.6) 63.6 45.3 32.0 22.4 18.2 44.3 42.4

3.4. Quantitative Results

Performance on MSCOCO and Flickr30k: Table 1-2 show
the results on MSCOCO and Flickr30k datasets with a com-
parison with the state-of-the-art solutions mentioned in Sec-
tion 3.3. First, we showed the performance of MaC with three
different binary mask detection scores D = 0.4, D = 0.5
and 0.6 and found out D = 0.5 achieves the best results on
both datasets. So it is selected for the rest of the experiments.
On the MSCOCO dataset, it is noticed that MaC outperforms
all the methods including semantic and visual attention-based
approach. In particular, MaC achieves a relative improvement
over similar work - RA+SS [4] on BLEU-4 and CIDEr-D
scores from 31.3 to 32.4 and 95.5 to 96.8 respectively. Note
that RA+SS [4] employed ResNet101 as their encoder. Com-
paring to the baseline models, MaC significantly outperforms
the Baseline and MaCmask with a large margin. In particular,
we can see that without the scene layer, MaCmask could not
generate captions that are semantically correct as shown in
Fig. 3. For instance, we notice that all the images in Fig.
3 involve frisbee and it will be rather confusing if the scene
information is missing as shown in the second (i.e. field) and
third (i.e. beach) images. In terms of quantitative analysis,
we noticed that the CIDEr-D score improved by 8.4% from
89.3 to 96.8. On Flickr30k, MaC also achieves comparable
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(a) a dog playing with a frisbee
in the grass.
(b) a dog running with a frisbee in its
mouth.

(a) two men playing frisbee in a field.
(b) a couple of men playing a game of
frisbee.

(a) a young man throwing a frisbee
on a beach.
(b) a group of people playing a game of
frisbee.

(a) A young boy holding a frisbee in his
hand.
(b) A young boy in a blue shirt holding a
frisbee.

Fig. 3: Comparison of captions generated by (a) MaC and (b) MaCmask. Underline red text indicates the scene in the sentence.

(a) A group of kids playing soccer
on a field.
(b) A group of kids playing soccer.
(c) A group of children playing soccer on a
field.
(d) A group of five kids playing soccer
together.

(a) A man holding an umbrella walking
down a street.
(b) A man holding an umbrella in the rain.
(c) A woman holding an umbrella in the
rain.
(d) A man with suit and tie holding an
umbrella walking down the street in the
rain.

(a) A herd of elephants walking across
a lush green field.
(b) A herd of elephants walking across a
field.
(c) A group of elephants walking through a
field.
(d) A group of elephants walking by a tree
in the jungle.

(a) A man and woman in a kitchen
preparing food.
(b) A couple of people standing in a
kitchen.
(c) two people in a kitchen preparing food.
(d) A man and woman in the kitchen
preparing food.

Fig. 4: Comparison of captions generated from different baselines where (a) MaC, (b) MaCmask, (c) Baseline, and (d)
Groundtruth, respectively. Underline red text indicates the scene in the sentence.

results with the state-of-the-art methods and outperforms all
the baseline models.

Evaluation on Uniqueness of Generated Caption: Table
3 shows the comparison on uniqueness of generated caption
by MaC and the baseline models. We compare the generated
captions with training captions, and a caption is considered as
unique if the generated caption does not exist in the training
captions. It shows that MaC is able to generate more unique
captions when compared with Baseline and MaCmask on
both datasets. Although, MaCmask has the longest average
caption length but it also has the lowest uniqueness on both
datasets. This is because it tends to generate caption that
focuses on objects only, ignoring the scene.

3.5. Qualitative Results

Fig. 41 shows a few sample images, and the respective
human-annotated ground truth caption and captions gener-
ated by different baselines in comparison to MaC. From these
results, it shows that MaC can generate caption that captures
both the objects and scene in an image, and MaCmask as
expected generates caption without the scene context. For in-
stance, in the first image of Fig. 4, MaC is able to generate “a
group of kids playing soccer on a field”, but MaCmask only
able to synthesize “a group of kids playing soccer” where
the scene information is missing in the image. In the fourth
image, MaCmask generates “A couple of people standing
in a kitchen”, but missing of the main information which is

1More results in supplementary material.

Table 3: Comparison on uniqueness of caption generated by
proposed MaC model and baseline models.

Methods
MSCOCO Flickr30k

Unique Avg. length Unique Avg. length

Baseline 51.20% 8.92 89.50% 9.37
MaCmask 48.36% 9.07 87.90% 9.58
MaC 53.74% 9.03 89.70% 9.37

“preparing food”. In contrast, MaC generates caption that
captures the semantic relationship between the objects and
scene. This is similar in the second image where MaC uses
mask features (man, umbrella) and scene feature (street)
to generate caption that is semantically correct by describing
how the objects interact in the scene. Comparing to the Base-
line, the scene (street) is missing in the generated caption.

4. CONCLUSION

This paper presented a new framework for image caption-
ing, which explores the objects and scene in the image using
mask layer and scene layer to generate captions. Experimen-
tal results on MSCOCO and Flickr30k datasets demonstrated
the proposed model significantly outperforms baseline mod-
els and achieves comparable results with the state-of-the-art
methods. Our future work is to explore other cues in the Mask
R-CNN model such as size ratio to generate captions. We will
also explore soft attention mechanism using object mask to
decide whether and when to attend to the image.
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