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Fig. 1. UCF Sports Dataset: Comparison between our proposed and conventional methods. From left to right: Groundtruth;
Our proposed; EBSD [1]; Eye-gaze [2]; objectness detector [3]; colour saliency [4]; video saliency [5] and space-time [6]

ABSTRACT

In this paper, we propose a novel video saliency detection
method using the Partial Differential Equations (PDEs). We
first form a static adaptive anisotropic PDE model from the
unpredicted frames of the video using a detection map and a
saliency seeds set of most attractive image elements. At the
same time, we also extract motion features from the predicted
frames of the video to generate motion saliency map. Then,
we combine these two maps to obtain the final saliency map
(video). Experiments on various human-action datasets show
that our video saliency detection model performs favourably
against the conventional solutions.

Index Terms— saliency detection, partial differential
equation

1. INTRODUCTION

Saliency detection is an attention mechanism that focuses on
limited perceptual and cognitive regions, and thus eases out
the process of carrying further tasks to analyse and understand
images or videos. The saliency detection is closely related to
how humans perceive the visual stimuli and therefore results
in a saliency map, where each pixel value or pixel score de-
scribes how it stands out from its surrounding neighbourhood.

In this paper, our work is focused on video saliency de-
tection using Partial Differential Equations (PDEs) as illus-
trated in Fig. 2. Compared with image saliency detection,
video saliency detection algorithms have to calculate the mo-
tion saliency map since motion is an essential factor to attract
human attention. There has been numerous saliency detec-

tion models for video saliency detection1. For instance, [1, 8]
proposed a video saliency detection based on the features ex-
tracted from the DCT coefficients. Zhang et al. [9] model
the saliency detection as a manifold ranking on a graph prob-
lem. Kim et al. [10] proposed random walk with restart to de-
tect spatially and temporally salient regions. Wang et al. [11]
proposed a late-fusion strategy to combine state-of-the-art vi-
sual saliency detections using confidence scores. With the
advancement of deep learning solutions, [12–14] employed
different convolutional models to study video saliency.

At the same time, PDEs have been used successfully in
many low-level image processing tasks such as image denois-
ing, inpanting etc [15], and recently in more complex tasks
such as image saliency detection [16]. It is based on the lin-
ear elliptic system with Dirichlet boundary (LESD) model be-
cause traditional PDEs with fixed formulation and boundary
condition could not efficiently quantify and explain complex
visual saliency patterns, thus it will fail to solve the saliency
detection problem. However, the work is not suitable for
video saliency detection task as the original LESD model (i)
does not consider the orientation and motion information con-
tain in the video; and (ii) uses the center-prior.

The main contributions of this paper are as follows. First,
we propose a novel method to generate the static saliency
map based on the adaptive nonlinear PDEs model [16] with
refinements. Particularly, we extend our model to flow-like
structure so that it can rotates the PDEs flow towards the
orientation of interesting features. Secondly, we do not use
center-prior. Rather, an extensive direction map consists of
background, color, texture and luminance prior are employed.

1For a more comprehensive literature, we refer interested readers to [7]
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Fig. 2. Pipeline of our proposed non-linear PDE based video
saliency detection method.

This is because most of the video datasets contain heavy noise
and the salient object is usually moving within the frames,
as opposed to images that are mostly noiseless and objects
appearance are nearer to the image center. Finally, experi-
ments on various human action datasets show that our pro-
posed model performs favourably against the conventional
methods (Section 3 and Fig. 4).

2. PROPOSED METHOD

Fig. 2 depicts the proposed framework. There are two main
parallel sub-processes: static saliency and motion maps where
these two maps are fused to derive the final saliency map.

2.1. Formulation of Static Saliency Map with PDEs

Let I be the unpredicted video frame. I(x, y) is a set of all
points corresponds to the video frame (i.e. pixels or superpix-
els). Let u(x, y, t) : I → R is the intensity of a frame with
diffusion time t, for the image domain I ∈ R×R. Also con-
sider, u(x, y, i) is the score function to measure the saliency
of each pixel i in the domain I(x, y). Therefore, given a
set of saliency seeds S and their corresponding score func-
tion u(x, y, i) = u0, iεS, we can mathematically formulate
saliency detection as an evolutional PDEs with initial condi-
tion such as:

∂ui
∂t

= G(u,5u, | 5 u|), on I × (0,∞)

u(x, y, 0) = u0, on I (1)
∂un = 0, on I × (0,∞)

where ∂ui

∂t denotes the first derivative with respect to the dif-
fusion time t and G is a function of u. The function G as a
diffusion term div(g(| 5 u|) 5 u), is a nonlinear PDE with
initial conditions given in Eq. 1. However, it does not give
a reliable information in the presence of flow-like structures.
To this end, we select the structure tensor, also referred as the
second moment matrix to rotate the flow towards the orien-
tation of interesting features. For a multivalued image, the

structure tensor has the following form:

Sσ = (
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i=1

5uiσ 5 uTiσ)

=
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2
iyσ

]
, (2)

With 5uiσ = Kσ ∗ 5ui = Kσ ∗ (uix, uiy), the smoothed
version of the gradient can be obtained by a convolution with
a Gaussian kernel Kσ . The structure scale σ determines the
size of the resulting flow-like patterns where increasing the σ
gives an increased distance between the resulting flow lines.
The advantages of these new gradient features allow a more
precise description of the local gradient characteristics, and
it’s smoothed version of Sσ , can be represented as:

Jρ = Kρ ∗ Sσ =

[
j11 j12

j21 j22

]
, (3)

whereKρ is a Gaussian kernel with standard deviation σ. The
integration scale ρ averages the orientation information, and
so it helps to stabilize the directional behavior of the filter.
In summary, the convolution with the Gaussian kernels Kρ

and Kσ make the structure tensor measure more coherent.
Mathematically, the structure tensor Jρ can be written over
its eigenvalues (λ+, λ−) and eigenvectors (Θ+,Θ−), that is
Jρ = λ+θ+θ+

T +λ−θ−θ−
T as shown in [17]. The eigenvec-

tors of Jρ give the preferred local orientations, while the cor-
responding eigenvalues denote the local contrast along these
directions.

In order to create a truly anisotropic scheme, [17] pro-
posed a nonlinear diffusion tensor, replacing the diffusivity
function G(·) in Eq. 1 with the combination of two types of
novel tensors as follows: one allows diffusion along the orien-
tation of greatest coherence, while the other allows diffusion
along orthogonal directions. That is,

∂ui
∂t

= div((K1(Jρ) + αK2(Jρ))5 ui), (4)

where i = 1, · · · , n on I; The parameter α is a regularization
term to ensure the compromise between two tensors. K1 is
defined to control the local diffusivity at i, and is constructed
from the local coordinate system, i.e., for a neighborhood
set of i, Ni = {j1, j2, · · · , jn}. K1 = K1(Jρ) is defined
as K1 = diag(k(i, j1), k(i, j2), · · · , k(i, jn)), where, k(i, j)
is the Gaussian similarity between the nodes. K2(Jρ) is the
structure tensor and this tensor posses the eigenvectors θ−, θ+

as the structure tensor Jρ and uses the eigenvalues λ1, λ2, to
control the diffusion speeds in these two directions, that is
K2 = K2(Jρ) = λ1θ+θ+

T + λ2θ−θ−
T .

To incorporate the high-level prior into the diffusion pro-
cess, another regularization term, η(.) is introduced such that:

∂ui
∂t

= div((K1(Jρ) + αK2(Jρ))5 ui)

+η(u(i)− d(i)), iεS, (5)
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where d(i) is the guidance map and η ≥ 0 is a balance pa-
rameter. In this paper, we only consider the situation when
the saliency evolution is stable and so only find a solution to
the the following PDE2:

∂ui
∂t

= 0, on I × (0,∞)

u(x, y, 0) = u0, on I (6)
∂un = 0, on I × (0,∞), iεS.

Therefore, given a video frame, the saliency detection task
grounds to the problem of solving Eq. 6 to achieve a stable
state for visual attention diffusion. Note that, Eq. 5 can be
solved numerically using the finite differences scheme [18]).
As such, the time-derivative ∂ui

∂t at (x, y, tn) can be approx-

imated by the forward difference ∂ui

∂t =
(un+1

i −un
i )

∆t , which
leads to the iterative scheme:

un+1
i = uni + ∆t div((K1(Jρ) + αK2(Jρ))5 uni )

+η(u(i)− d(i)), iεS (7)

2.2. Static Map

In previous section, we have formulated the anisotropic PDEs
system for saliency diffusion. This section will explain how
we incorporate the direction map d and saliency seed set S
in Eq. 7. As aformentioned, we do not use center-prior as
to [16]. Rather, we extract the color prior, texture and lu-
minance features knowledge using the discrete cosine trans-
form (DCT) coeffiencts of video frames to build the direc-
tion map d. The Y CrCb color space is used to encode the
given video frames. Here, we first transfer the DC coeffi-
cients from Y CrCb color space to the RGB color space to
extract the luminance and color features of the video frames.
We calculate the color and luminance features L from DCT
coefficients by generating four broadly-tuned color channels:
R = r − (g + b)/2;G = g − (r + b)/2;B = b− (r + g)/2

and Y = (r+g)
2 − |r−b|2 − b, where r, g, b denote the red,

green and blue color components from the DC coefficients
and R,G,B, Y denote the new red, new green, new blue and
new yellow components, respectively. So the colour feature
can be calculated as Crg = R−G and Cby = B − Y , where
Crg, and Cby are the color features for an 8 × 8 block in the
video frame. For texture, we only use the AC coefficients
from the Y component to extract the texture feature Te as AC
coefficients of Cr and Cb components provide little informa-
tion on the texture [19, 20].

2.2.1. Direction Map

For diffusion based saliency, we partition I into superpix-
els using SLIC [21] and obtain the superpixel set V =
{s1, s2, · · · , s|v|}. That is, we divide the image into two

2The time parameter t is omitted at this stage in the notation.

parts to obtain the salient region: foreground Fc, which con-
tains the salient object including some background regions
and pure background Bc, which is the non-salient region us-
ing the convex hull. The foreground is obtained by collecting
nodes inside the bulged out convex curve C and the remain-
ing nodes will serve as the background nodes. Then, we map
these nodes to a graph G = (V,E) with superpixels as nodes.
We formulate a simplified non-linear PDE to compute the
background diffusion score, with η = 0 in Eq. 5 to get the
probability of background score. Foreground score can be
calculated as uf (i) = 1 − ub(i). The final direction map is
defined as d(i) = L× Crg × Cby × Te× uf (i).

2.2.2. Saliency Seed Set

Saliency seed set S is obtained using optimizing saliency
seeds via submodularity. Since, not all the nodes in Fc can be
used as saliency seeds, it is very important to have the set of
most representative seeds in the foreground. For this purpose,
we maximise the sum of score function u with respect to all
the superpixels in V when the saliency diffusion is stable. To
this end, we solve the discrete optimization problem that is
based on the approximation of discretize PDE formulation as:

max
S∈Mn

L(S), s.t.

u(i) =
1

di + η
(
∑

j∈N(i)

(K1(j) + αK2(j))u(j)

+ηd(i))

u(i) = si, i ∈ S,

where di =
∑
j∈N(i)(K1(j)+αK2(j)),L(S) =

∑
i∈V u(i;S)

and Mn = {S|S ⊂ Fc, |S| ≤ n}, is an uniform matroid to
enforce that the cardinality of S is no more than n, maximum
number of saliency seeds.

2.3. Motion Map

The motion map is generated from the motion features of the
predicted (P andB) frames using the motion vectors from the
video bitstream. As there is only one prediction direction for
P frame, the original motion vector MV is used to calculate
the motion feature in the P frames. For bidirectional frames,
we calculate the sum of both past (MVp) and future (MVf )
vector frames as V = MVp + (−1) ∗ MVf . The motion
feature of each DCT block in the B frames is obtained from
V , while the original motion vector is used to represent the
motion feature for each DCT block in the P frames.

2.4. Final Saliency Map

Since unpredicted frames contain no motion features, the mo-
tion saliency map of the previous predicted frame is adopted
to represent the motion saliency of the current unpredicted
frame. Thus, the final saliency map for unpredicted frames
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Fig. 3. Sample video saliency maps obtained from our al-
gorithm tested on three different datasets. (top) Weizmann
dataset [22], (middle) Hollywood dataset [23] and (bottom)
UCF sports dataset [24].

becomes Sun = ψ(Ss, Smp) where Ss is the static saliency
map of the unpredicted frame, and Smp

is the motion saliency
map of the previous frame where ψ is a hybrid function. Sim-
ilarly, since the predicted frames have no static features, static
saliency map of the previous unpredicted frame is used to
represent the static saliency map of current predicted frame.
Therefore, for predicted frames, the final saliency map be-
comes Sre = ψ(Ssp , Sm) where Ssp is the static saliency
frame of previous unpredicted frame and Sm is the motion
map of current predicted frame. The final (video) saliency
map is represented as S = Sun ⊗ Sre.

3. EXPERIMENTS

Datasets. We test the performance of proposed method
on Weizmann [22], Hollywood [23] and UCF Sports [24]
datasets. All these datasets depict challenging scenarios in-
cluding camera motion, cluttered backgrounds, and non-rigid
object deformations. We set the PDE model’s parameters to:
α = 0.7, σ = 1.35, ρ = 4.05, η = 0.5.

Results. Fig. 3 shows the exemplar of video saliency maps
obtained from our algorithm on Weizmann [22], Holly-
wood [23] and UCF Sports [24] datasets. It shows that
our method is able to learn the dynamic saliency information
and detects salient moving objects accurately. For the com-
putational complexity, we conducted the experiment on both
CPU and GPU machines. The average computational time of
our proposed method for each video frame on the CPU3 is
4:89sec; while on the GPU4 is 0.25sec.

Comparison. Fig. 1 and 4 show a comparison of our pro-
posed method with a few conventional algorithms in the UCF

3Intel Xeon(R) ES-2609, 2.50GHZ
4Nvidia GeForce GTX Titan Z

Fig. 4. Qualitative comparisons on UCF sports dataset [24].
(Top row): Input images with ground-truth annotations. (2nd

- 7th row): Eye-gaze tracking [2]; EBSD [1]; objectness de-
tector [3]; colour saliency [4]; video saliency [5] and space-
time saliency [6]. (Final row): Our proposed model.

sports dataset. It is observed that the eye-gaze method [2] and
encoding-based saliency detection (ESBD) [1], can only iden-
tify center surround differences but miss most of the object
information. [3–5] performed badly as the low-rank assump-
tion may be invalid when image contain complex structures.
Meanwhile, our proposed method successfully highlights the
salient region more uniformly.

4. CONCLUSION

This paper proposes a novel video saliency detection method
inspired by PDEs. Particularly, we introduce a novel method
to generate static saliency map based on the adaptive nonlin-
ear PDEs model. Experimental results had shown the effec-
tiveness of the proposed method in three public human action
datasets when compared to the conventional solutions.
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