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Abstract—Multi descriptions property is a fundamental prop-
erty on membership functions of fuzzy sets, which has not been
attended so far. The property suggests that not all membership
functions of fuzzy sets can be viewed as a simple number in the
range of 0 and 1. In fact, membership function of an element
in a fuzzy set should be viewed as the sum of strength of
the element that show each attribute which describes the fuzzy
set. Therefore, fuzzy sets operation such as union, intersection
and subsethood measure need to be revised. By adopting multi
descriptions property, this paper introduced a set of improvement
based on Checklist Paradigm for these operations for type-
1 fuzzy sets. Since the multi descriptions property may also
appear in type-2 fuzzy sets, we proposed a method for the
subsethood measurement, namely Representative Method. This
Representative Method provides simple and fast approximate
measurements for subsethood.

I. INTRODUCTION

A membership function is a measure that we use to
determine the compatibility of an element in a fuzzy set.
Fundamental operations of fuzzy sets such as intersection,
union, negation as well as subsethood measurements are the
examples of operations on membership functions.

One might believe that the mapping of an element to a fuzzy
set with membership function is a linear process, i.e. for any
two elements a1 and a2 in a fuzzy set A, µA(a1) = µA(a2) ∈
[0, 1] represents that the configuration of memberships of a1
and a2 in A are totally identical. However, this might not be
completely correct for the sets that possess multi descriptions
property - a property of membership functions suggesting
that membership functions may be able to characterized by
multiple partially independent attributes. We name these kind
of sets as multi descriptions sets.

A membership function may be characterized by multiple
partially independent attributes/descriptions. In such cases, a
figure that represents the membership function is, in fact
come from multiple descriptions that can be “partitioned”.
Hence, treating a membership function with multi descrip-
tions property like a single number is practically ignored
the possible “cavities” in those “partitions”, and this brings
inaccuracy or incompleteness in computations. Unfortunately,
inattention to this multi descriptions property are very common
in many fuzzy operations. For example, using min as t-
norm in intersection operations, max in as t-conorm in union
operations [1]–[3] and Kosko subsethood measurement [4]. In
this paper, we discuss this unattended property and propose a
novel solution in developing more general fuzzy operations.

We adopted the checklist paradigm [5], which able to generate
a list of measurements to find complete solutions for union,
intersection and subsethood operations in type-1 fuzzy sets.
Nevertheless, for the case of type-2 fuzzy sets, we propose
a novel method on subsethood measurement, namely the
Representative Method. This method aims to provide simple,
fast, approximate subsethood measurements. While most type-
2 fuzzy subsethood measurements in the literature [6]–[8]
give the results of a measurement as a point value, the
Representative Method we proposed gives interval or a type-1
fuzzy set instead, to make the measurements more reliable.

This paper is structured as follow. We discuss the multi
descriptions property in Section II, along with the problem
that may arise. Two possible solutions of this property are
discussed in Section III, with focus are given to the Checklist
Paradigm. We extend the solution of subsethood measurement
of type-1 fuzzy sets to type-2 fuzzy sets in Section IV, where
Representative Method is also discussed. We conclude the
paper in Section V.

II. MULTI DESCRIPTIONS PROPERTY OF SETS

It is easier to present the problem with an example in type-
1 fuzzy sets. Assume that Asian Food, A is a fuzzy set in
the universe Food, X . An element in this fuzzy set, x is
characterized with a membership function µA(x) ∈ [0, 1]. For
a particular food, which denoted as x′ has µA(x′) = 0.8. My
Favourite Food is another fuzzy subset in X , denoted B. To
make the case simpler, assume that B has only 1 element
which is exactly x′. With theorem of union and intersection,
we can easily write the following:

A
⋃
B(x) = τ c

(
µA(x), µB(x)

)
= max

(
µA(x), µB(x)

)
(1)

A
⋂
B(x) = τ

(
µA(x), µB(x)

)
= min

(
µA(x), µB(x)

)
(2)

where τ c and τ are t-conorm and t-norm respectively. We also
can find the subsethood of B in A with subsethood theorem
proposed by Kosko [4]:

π(B ⊆ A) = 1−

∑
x∈X

max(0, µB(x)− µA(x))∑
x∈X

µB(x)
(3)
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If given that µB(x′) = 0.6, one might take max and min
as t-conorm and t-norm respectively to find A

⋃
B(x) =

max(0.8, 0.6) = 0.8, A
⋂
B(x) = min(0.8, 0.6) = 0.6 and

π(B ⊆ A) = 1 − max(0,0.6−0.8)
0.6 = 1.0. Until this stage, we

may not see any problem with all these operations. However,
if we re-examine these operations closely with considering the
nature of membership functions, we will find that there is a
flaw in the operations which caused by the multi descriptions
property of fuzzy sets.

To explain this flaw, firstly, we should aware that a mem-
bership function is a compatibility measure of an element in
a fuzzy set. In some cases, this compatibility measure can
be quantified easily with the principle of linear increment. For
example in the fuzzy set of Tall Man T , if 250cm is considered
absolute tall with µT (250cm) = 1 and µT (50cm) = 0, so
for a particular t ∈ [50cm, 250cm], the membership function
may be assigned as µT (t) = t−50

250−50 . However, this simple
assignment of membership functions is only true if the set is
a single description set - a set which can be fully specified
with only one factor (measurement from head to foot of a
standing person in this case).

We used to treat all fuzzy sets as single description sets.
In fact, some fuzzy sets are multi descriptions sets, where the
membership functions are not determined by a single factor
only. For a multi descriptions set, more than one factors are
involved in defining a membership function. Each factor, or
description di determines a certain portion of the membership
function, such that:

N∑
i=1

di = 1 (4)

where N is the number of descriptions for the set. All of these
descriptions are partially independent. Membership function of
an element in a set is given by summing up all the products
of descriptions di and ci ∈ [0, 1], where ci is the strength of
the element in showing description di:

µA(x) =
N∑
i=1

dici ∈ [0, 1] (5)

Refer back to the Asian Food example, there is no single
attribute that can help us to perfectly identify the membership
of a food in A. Rather, Asian Food identifies its members
with descriptions such as ingredients, method of preparations,
cookware to use and etc. Each description contributes certain
degree of measure in its membership function. We will not say
a food is having high membership degree in set A if it only
uses local ingredients, but no other identities of Asian Food
can be found.

Since we used to assume all fuzzy sets are single description
sets, multi descriptions property of some sets has been ignored.
In the calculation of union, intersection and subsethood, we
assumed that those membership functions are simple scalar
values that we can perform operations such as Eq. (1) -

TABLE I
CONTRIBUTION OF DESCRIPTIONS TO MEMBERSHIP FUNCTIONS OF SET A

AND B IN A BEST MATCHING SCENARIOS

Set d1c1 d2c2 d3c3 d4c4 d5c5 µ(x′)
A 0.2 0.2 0.2 0.1 0.1 0.8
B 0.2 0.2 0.2 0.0 0.0 0.6
A∩B(x′) 0.2 0.2 0.2 0.0 0.0 0.6
A∪B(x′) 0.2 0.2 0.2 0.1 0.1 0.8

(3) directly. In fact, this may not be true. For a multi de-
scriptions set, the membership functions were partitioned by
several descriptions as shown in Eq. (5). Simply performing
the above operations on membership functions means that
we either assume that those sets are single description sets,
or it happens that those multi descriptions sets are having
membership functions that come from the same descriptions.
Both assumptions may bring unexpected results. We illustrate
this with the following scenarios.

Let’s assume both A and B can be identified with 5
descriptions di, i ∈ {1, 2, . . . , 5}. Each description contributes
0.2 to its membership functions to make the sum 1.0. In
some instances, for x = x′, where µA(x

′) = 0.8 and
µB(x

′) = 0.6, the contribution of each description to the
membership function may distribute like what is displayed in
Table I, i.e. matrix of the strength of x′ in showing descriptions
corresponding to d1 to d5, c1 to c5 are [1.0, 1.0, 1.0, 0.5, 0.5]
for A and [1.0, 1.0, 1.0, 0.0, 0.0] for B.

As we can see in d1c1 to d3c3, the membership functions of
both sets are having maximum overlapping for these descrip-
tions. This is the case that we have assumed so far. While
this case represents best matching scenario, taking Eq. (1) for
union, Eq. (2) for intersection, as well as Eq. (3) as subsethood
measurment will get reasonable results.

In some other instances, matrix of the strength of x′ in
showing descriptions in set B may have the following config-
uration : [0.0, 0.0, 0.2, 0.2, 0.2]. In this case, the composition
of membership functions may like what we can see in Table
II, where membership functions of x′ for A and B are greatly
contributed by different descriptions. Operations that designed
to work in best matching scenario are not going to work
correctly in this scattered membership function scenario. If
we consider the spirit behind the union, intersection and
subsethood, we should find that:
• A

⋂
B(x′) = 0.4 because only 0.2 in d3 and 0.1 in both

d4 and d5 are intersected.
• A

⋃
B(x′) = 1.0 because all the descriptions d1 to d5

are covered by A or B.
• The contribution of membership function of x in B

by descriptions d4 and d5 are greater then membership
function of the same element in A, so it is clear that
π(B ⊆ A) = 1 is not justified anymore.

It is clear that for multi descriptions sets, Eq (1) - (3) only
work for the case when the membership functions of both sets
have maximum overlapping as presented in Table I. Definitely,
this does not represent the general cases where the component
of membership functions are scattered to a list of descriptions.



TABLE II
CONTRIBUTION OF DESCRIPTIONS TO MEMBERSHIP FUNCTIONS OF SET A

AND B IN SCATTERED MEMBERSHIP FUNCTION SCENARIO

Set d1c1 d2c2 d3c3 d4c4 d5c5 µ(x′)
A 0.2 0.2 0.2 0.1 0.1 0.8
B 0.0 0.0 0.2 0.2 0.2 0.6
A∩B(x′) 0.0 0.0 0.2 0.1 0.1 0.4
A∪B(x′) 0.2 0.2 0.2 0.2 0.2 1.0

Adopting multi descriptions property may help us to develop
more general and complete expressions for union, intersection
and subsethood measurement.

Before we find solutions of multi descriptions property in
the next section, we would like to point out that not all fuzzy
sets are multi descriptions sets. Set of Expensive Food is an
example of classical single description fuzzy set where the
membership functions can be completely evaluated with the
price of the food. The following are some examples:

• The set of high salary employees is a set with single
description, whereas the set of high valued employees
is a set with multi descriptions, because the value of
an employee may be evaluated with their work ethics,
analytical aptitude, ability to learn, etc.

• The set of areas with high transmission rate of H1N1
influenza is a set with single description, whereas the set
of people with high risk to H1N1 influenza is a set with
multi descriptions property. The age, status of pregnancy,
history of diabetes and some other descriptions of a
people may determine their risk of being influenced.

• It is worth to point out that some fuzzy sets that may
look quite straight forward can be multi descriptions
in actual. For example, set of patients with cough may
be considered as multi descriptions, because cough has
descriptions such as severity, chronic and frequency.

III. SOLUTIONS OF MULTI DESCRIPTIONS PROPERTY

A. Type-2 Fuzzy Sets

Type-2 fuzzy sets (T2FS) theory is an extension of classical
fuzzy sets theory, which also called Type-1 fuzzy sets (T1FS)
[9]. A T2FS, denoted Ã is a fuzzy set characterized with type-
2 membership functions µÃ(x, u), where x ∈ X and u is the
secondary variable such that u ∈ Jx ⊆ [0, 1]. Each xi ∈ X has
a primary membership Jxi

, which is an interval where uk, k ∈
[0, 1] sits on. The possibility of this secondary variable, uk is
given by its secondary grade fxi(uk) ∈ [0, 1]. For more about
T2FS please read [10]–[12].

T2FS can be a solution of multi descriptions property up
to certain extend, if the original multi descriptions set is a
T1FS. This solution can be obtained by developing each of the
description of the set into a discrete secondary variable u in
T2FS. Hence, the secondary grade fx(u) will become the the
strength of an element in showing this description. However,
the effort of extending a multi descriptions sets into a higher
type is an effort to being precise with all kinds of vagueness.
This extension may come with the following shortcomings:

• Solving the problem with a T2FS means we need to
develop all the descriptions of the T1FS to a secondary
variable in T2FS. The possibility to do so is a challenge if
the descriptions of the set is hard to define. “High valued
employees” is one of the example where its descriptions
and corresponding weights are very subjective.

• After extending the T1FS to T2FS, we may find that some
of the descriptions, or secondary variables in T2FS is still
describable. For example, “work ethics” as an description
of the set “high valued employees” is an expendable
description. Do this means that we need to extend the
set to a type-3 fuzzy set?

• Again, if the original set is already a T2FS, a higher
type fuzzy set is not avoidable in this sense, although the
research in this filed is still few and far between.

• Sometime, we may have more then one frameworks to
develop the descriptions of a set. Since the descriptions
of one framework are not independent from another one,
so we need to decide on which framework to choose.
For example, Asian Food may be described with details
of production (e.g.: ingredients, method of preparations,
cookware to use and etc) or the product itself (e.g.:
appearance, smell, taste and etc). descriptions of the
products, such as taste is always depends on the ingredi-
ents and method of preparation (property of methods of
production).

• Since each description in a set may have different weight,
how to represent this weight is a challenge for a discrete
secondary variable.

Thus, T2FS may not be a very good solution for multi
descriptions property. In this paper, we propose to adopt the
checklist paradigm [5].

B. Checklist Paradigm

In the case of multi descriptions sets, a general solution
for computing membership functions under union, intersection
and subsethood operations is not easy to obtain. However,
Checklist Paradigm that proposed by Bandler and Kohout
[5] may help us to find the bounds and expected values of
these operations. Bandler and Kohout have proposed Checklist
Paradigm as a solution to generate various kind of logical
connectives with bounds. Since Eq. (1) - (3) have been proven
in Section II that they only represent the best matching
scenario, bounds that included Eq. (1) - (3) are expected
to find out through the Checklist Paradigm. For the sake
of completeness, we present the Checklist Paradigm here,
using fuzzy membership functions instead of crisp value in
the original version. To suite our needs, we also replace the
checklists with set’s descriptions in this presentation.

Consider a list of descriptions di, i ∈ {1, 2, . . . , κ} on both
Asian Food A and My Favourite Food B. Assume that by
studying an arbitrary food x, the strength of x in showing
each of the description of A, ci can be found. Hence, with Eq
(5) we can define membership function of x in A, µA(x) as
a =

∑κ
i=1 dici ∈ [0, 1]. Similarly, the membership function

of x in B, µB(x) can be found too, denoted as b. We also



TABLE III
CHECKLIST PARADIGM: THE MATRIX OF RELATIONS BETWEEN A AND B

A A′ total

B s00 = µA
⋂

B(x) s10 = µA′ ⋂B(x) b

B′ s01 = µA
⋂

B′ (x) s11 = µA′ ⋂B′ (x) 1− b

total a 1− a 1

TABLE IV
DEFINING THE RELATIONS OF A AND B IN TERM OF θ

A A′ total

B θ b− θ b

B′ a− θ 1− a− b+ θ 1− b

total a 1− a 1

define A′ and B′ as complements of A and B respectively,
with membership functions 1− a and 1− b.

By arranging A, A′, B and B′ into a table, we obtain
4 cells that represent A

⋂
B(x), A

⋂
B′(x), A′

⋂
B(x) and

A′
⋂
B′(x) (Table III).

Table III can be studied easier if we define the figure in
cell s00 as θ. This lead to the figure in the other 3 cells being
defined (Table IV). Now, it is clear that θ is the only variable
in the table, if a and b has been fixed.

Consider when the value of θ change but the total in all
columns and rows preserved, we can find various extreme
configurations for the table. These extreme configurations
represent extreme cases of the table and they help us in
defining bounds of union, intersection and subsethood.

In two extreme cases, the intersection of A and B are
maximum (corresponding to maximum in cell s00 or s11) -
this can be either when A′

⋂
B(x) = 0 or A

⋂
B′(x) = 0.

In the first case, θ = b and in the second case, θ = a.
Intersection of A and B also can be expressed as AANDB,
which corresponding to cell s00. In the case θ = b, AANDB
gives A · B = b, and in the case θ = a, it gives A · B = a.
The combination of these two cases gives the definition
A
⋂
B(x) = min(a, b).

For the union of A and B, it can be expressed as AORB.
Since A∪B = (A∩B)∪(A∩B′)∪(A′∩B) , it is corresponding
to cells s00 + s01 + s10. In the case θ = b, it is given by
(b) + (0) + (a − b) = a; in the case θ = a, it is given by
(a)+(b−a)+(0) = b. So, this gives the definition A

⋃
B(x) =

max(a, b).
For subsethood, Kohout and Bandler [13] have proposed

that fuzzy implication operators measurement:

π(A ⊆ B) =
∧
x∈X

(µA(x)→ µB(x)) (6)

where ∧ can be considered as function min or arithmetic
mean, and → is fuzzy implication operator defined as NOT A
OR B (corresponding to cells s00 + s10 + s11). Various valid

fuzzy implication operators have been studied in [?], [13],
[14]. From Table IV, we can find (b)+(b−b)+(1−a−b+b) =
1− a+ b and (a) + (b− a) + (1− a− b+ a) = 1 for θ = b
and θ = a respectively. So, by combining both cases, we get
definition:

π(A ⊆ B(x)) = min(1, 1− a+ b)

for the case of one element x. For the general case of multiple
elements, it is represented by:

π(A ⊆ B(x)) =
∧
x∈X

min(1, 1− a+ b) (7)

This expression is equivalent to implication under
Łukasiewicz implication operator, denoted IŁ(a, b). Kosko [4]
also proved that this expression is equivalent to the subsethood
theorem (3) that he derived when the cardinality is normalized.

Using Checklist Paradigm, we found when A and B have
maximum intersection, we have min as intersection measure
(t-norm), max as union measure (t-conorm) and IŁ, which is
equal to Eq. (3) as subsethood measure. This result is totally
identical to the case when the membership functions are in best
matching scenario, as presented in Eq. (1) - (3). Since this is
in the scenario when A and B has maximum matching, the
measurements of intersection and subsethood are the upper
bound measurements, whereas the measurement of union is
lower bound measurement:

A
⋃

lowB(x) = max(a, b) (8)

A
⋂

upB(x) = min(a, b) (9)

π(A ⊆upB(x)) =
∧
x∈X

min(1, 1− a+ b) (10)

In another 2 extreme cases, we have A
⋂
B(x) = 0 or

A′
⋂
B′(x) = 0. The former gives us θ = 0 and the later

gives us θ = a + b − 1. Using these values of θ, we can
find another set of measurements, which represent the upper
bound of union and lower bounds for both intersection and
subsethood:

A
⋃

upB(x) = min(1, a+ b) (11)

A
⋂

lowB(x) = max(0, a+ b− 1) (12)

π(A ⊆lowB(x)) =
∧
x∈X

max(b, 1− a) (13)

This set of expressions gives the upper bound of union
as bounded sum t-conorm. The counterpart of this t-conorm,
bounded difference t-norm was given as the lower bound of
intersection. The subsethood measure is given by Kleene-
Dienes fuzzy implication operator, denoted IKD.



The change of value θ gives the upper and lower bounds of
intersection, union and subsethood. The combination of values
reach it expected case when A · B = ab, or in another word,
θ = ab. In such case, we can find the expected measurements
for these operations:

A
⋃

exB(x) = a+ b− ab (14)

A
⋂

exB(x) = ab (15)

π(A ⊆exB(x)) =
∧
x∈X

(1− a+ ab) (16)

In the expected case, the union and intersection are given
by algebraic sum and algebraic product respectively. The
subsethood measurement is given by a Reichenbach fuzzy im-
plication operator, denoted IR. This fuzzy implcation operator
always gives values sit in between IŁ and IKD. One should able
to see that in this set of expected value measurements, Eq. (14)
will always gives a value greater then Eq. (8) except when at
least one of a or b is 0 or 1. This is to adopt the possibility
of the components of membership functions may come from
different descriptions of the sets - the scattered membership
function scenario. Also due to the scattered membership
function scenario, Eq. (15) - (16) will have smaller values
compare to Eq. (9) - (10) respectively, unless a or b is(are) 0
or 1. It is also worth to point out that subsethood measurement
using Eq. (16) will not get result 1.0 (represents complete
inclusion) unless either a = 0 or b = 1. This explained the
theorems:
• An empty set is a complete subset of all sets.
• A set is a complete subset in another set if the later set

has membership function 1.
Checklist paradigm generated 3 sets of measurements for

union, intersection and subsethood, correspondence to the
upper bounds, lower bounds and expected values. In the past,
expressions Eq. (8) - (10) are assumed to be the perfect
solutions for corresponding operations. But with multi descrip-
tions property, we should learned that those expressions only
provide incomplete results, where membership functions are
in best matching scenarios. To capture the uncertainties bring
by the multi descriptions property, one should consider Eq.
(14) - (16), which provide more reliable results. Alternatively,
combination of Eq. (8) with Eq. (11), Eq. (12) with Eq. (9)
and Eq. (13) with Eq. (10) may also be used if intervals are
preferred compare to single-point values.

IV. SUBSETHOOD OF TYPE-2 FUZZY SETS

Subsethood measurement is an important operation in fuzzy
sets theory that may directly relate to applications such as
computing with words [3], [15]–[17], fuzzy relational calculus
[18], [19] and etc. However, a universally accepted definition
of subsethood measurement does not exist. In the past, the
authors that have been work on subsethood of T2FS include
Nguyen and Kreinovich [6], Rickard et al. [20], Yang and Lin

[7], Zheng et al. [8] and etc. Most of the work mentioned
above extends the T1FS subsethood definition of Kosko [21]
or its variants, which do not consider the multi descriptions
property of fuzzy sets.

All of the above definitions, except Rickard et al [20], give
a subsethood measurement as a single-point real number in
the interval [0, 1]. Regarding to this, we would like to do the
following deduction: the subsethood measurement of two crisp
sets is a boolean; for the measurement of two T1FS, it is a
single-point real crisp number in the interval [0, 1]; thus, for
subsethood of two T2FS, it should not be a single-point real
number anymore, but an interval or even a T1FS, depends on
the type of sets. However, Rickard’s subsethood measure for
interval T2FS, which produce an interval in [0, 1] encounter
the problem of low efficiency [20], [22].

In this section, we present a novel method of defining
subsethood measurements of T2FS based on fuzzy implica-
tion operators. This method, namely Representative Method,
produces intervals for the subsethood measurements of interval
T2FS, and T1FS as subsethood measurements of T2FS. Since
the method is developed based on the fuzzy implication
operators derived from Checklist Paradigm, the measurements
are robust against multi descriptions property of fuzzy sets.

We illustrate our method in the remaining of this paper with
2 T2FS, namely Ã and B̃. The secondary variables of these
sets are u and v respectively, whereas fx(u) and gx(v) are
corresponding secondary grades.

A. Representative Method

The main objective of Representative Method is to obtain a
approximate subsethood measure for 2 T2FS with simple and
fast calculations. The strategy to achieve this objective is as
follow:

1) For each T2FS Ã and B̃, find a compatible T1FS that
can represent the set in term of its domain in X and its
weighing in membership functions;

2) With these compatible T1FS, we perform calculations
based on expressions that we retrieved in from Checklist
Paradigm for T1FS to obtain the subsethood measure-
ment.

1) Representative Fuzzy Sets: Firstly, we can view a T2FS
as a union of multiple elements x over the universe X . Each
element in the set has its own membership function, which
is a T1FS in range Jxi

⊆ [ui, ui]. This T1FS, which also
called vertical slice is a two-dimensional plane showing the
possibility of each secondary variable, ui in the domain.

As these vertical slices are T1FS, we can perform defuzzi-
fication to find each a point-value that represents the whole
T1FS1. Center-of-area defuzzification is a widely used and
reasonable method to find the center-of-area as a representa-
tion of the T1FS in some fuzzy logic systems [1], [25], [26].

Center-of-area of a T1FS also called centroid. It divides a
graph of membership function of a T1FS into two portions

1In some fuzzy logic systems [23], [24], a defuzzification procedure is used
to obtain deterministic output action after the inferencing procedure. However,
we use the same method here to perform type-reduction on input.



Fig. 1. Once the center-of-area of all the elements are obtained, we can just
link them up to form a representative fuzzy set, RFS. The upper right insert
is the vertical slice of one of the membership function. For interval T2FS, the
center of sets are always the middle point of upper and lower bounds of the
interval.

with equal size. In case of a T2FS Ã, the center-of-area of the
continuous vertical slice of an element x is uc ∈ Jx such that:

uc =
∑
u∈Jx

u · fx(u)
/ ∑
u∈Jx

fx(u) (17)

If there is no value in Jx match the uc, the closest u
will be considered as uc. For a continuous vertical slice, the
symbol of sum can always be replaced with integration

∫
.

The corresponding membership function is given by fx(u
c).

Applying Eq. (17) on all the vertical slices of a descritized
T2FS Ã, we can get each element in Ã a representative, which
is its center-of-area. We can link up all the center-of-areas in
the series and find a fuzzy set that represents Ã on element
level (Figure 1). We call this representative fuzzy set (RFS)
Ä, given by:

Ä =
∑
x∈X

uc (18)

Since RFS provide good representation for T2FS as T1FS,
we can use it in the calculation of subsethood.

2) Interval Type-2 Fuzzy Sets: In case of both Ã and B̃ are
interval T2FS, all the secondary grades are constant 1. So Eq.
(17) can be reduced to:

uc =
u+ u

2
(19)

where u and u are the upper and lower bounds of primary
memberships. Furthermore, the generated RFS will be a T1FS.

From Eq. (18), we write Ä =
∑
x∈X(uc). For another set

B̃ with secondary variable v, we also can find a RFS B̈ =∑
x∈X(vc).

Since both Ä and B̈ are T1FS, we can substitute them into
Eq. (6) to get subsethood measurement for Ã and B̃:

π(Ã ⊆ B̃) =
∧
x∈X

(
uc → vc

)
(20)

Please recall that→ is fuzzy implication operator and ∧ can
be considered as function min or arithmetic mean. To make the
solution more robust, we consider all the contribution of each
pair of elements in Ã and B̃ and substitute ∧ as arithmetic
mean:

π(Ã ⊆ B̃) =
1

N

∑
x∈X

(
uc → vc

)
(21)

where N represents the cardinality.
As mentioned earlier, intervals provide better measurements

for the subsethood of T2FS compared to point-values. Equa-
tion sets developed in Section III-B provided a framework of
forming these T1FS. Eq. (10) and Eq. (13) provide a bound for
a measurement, whereas Eq. (16) provides the expected value.
By substitute Eq. (21) into these equations, we can easily get
an interval for the subsethood of Ã in B̃:

π(Ã ⊆ B̃) = [subl, subu] (22)

where subl and subu is the lower and upper bounds of the
interval, defined as:

subl =
1

N

∑
x∈X

max(vc, 1− uc) (23)

subu =
1

N

∑
x∈X

min(1, 1− uc + vc) (24)

If a single-point value is preferred, the expected value
should be:

π(Ã ⊆ex B̃) =
1

N

∑
x∈X

(
1− uc + ucvc

)
(25)

The value of π(Ã ⊆ex B̃) should sit around the middle of
the interval [subl, subu], so we can denote is as subm.

3) General Type-2 Fuzzy Sets: In case of the fuzzy sets Ã
and B̃ are general T2FS, the corresponding RFS are embedded
T2FS. The main different of these RFS compared to the RFS of
interval T2FS is, for each secondary variable uc or vc, there is
a corresponding secondary grade fx(uc) or gx(vc) associated
and these secondary grades may not be 1.

The easiest way of dealing with these secondary grades
is to take a strict 0-cut at all the secondary grades. This
can convert all RFS to T1FS, instead of embedded T2FS.
Then, the techniques that we used on interval T2FS can be
applied here to generate an interval to represent the subsethood
measurement. However, this discarded all the information
associates with those secondary grades.

Therefore, in order to take into account the secondary
grades, we relate them to the membership functions of the
intervals (or we should call them sets now) that generated.



y
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δ

Membership function 
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Fig. 2. Obtain a T1FS with triangular membership function with the
calculating of δ

Assume that C ⊆ Y is the T1FS that representing subsethood
measure Ã ⊆ B̃, δ, the height of C, is given by:

δ = Hgt(C) = min(Hgt(Ä),Hgt(B̈)) (26)

δ is the min of the height of both sets, which provides in-
formation about the maximum possibility of the measurement.
It is reasonable to adopt it as the membership functions of the
mid point of the measurement sets:

µC(subm) = δ (27)

and µC(subl) = µC(subu) = 0 to form a triangular member-
ship function (Figure 2).

The assignment in Eq. (26) meets the boundary conditions
of interval T2FS. If all the fx(uc) and gx(v

c) are 1, δ = 1.
This is equivalent to the case of both Ã and B̃ are interval
T2FS, and the result of the measurement also return to an
interval, rather then a set. When the fx(uc) and gx(v

c) start
decreasing, δ = 1 is not hold anymore, and this results in non
unity membership functions for subl and subr.

4) Variants of Representative Method: Besides center-of-
area defuzzification, mean-of-maximum defuzzification dis-
cussed in [25] may be used to replace center-of-areas to obtain
RFS if the involved T2FS are not interval T2FS. A mean-of-
maximum is defined as the mean of all the secondary variables
with maximum secondary grades:

um =
∑
u∈Gx

u/|G| (28)

Gx ⊆ Jx is the subset where all u with maximum fx(u) in Jx,
and |G| is the cardinality of Gx. Substituting uc with um and
vc with vm brings a variant to Representative Method. If the
sets involved are interval T2FS, one may find that um = uc.

The advantage of using mean-of-maximum over center-
of-area is its low computational cost, especially when the
secondary membership function is convex. For a system that
need simple and fast approximate subsethood measurement,
mean-of-maximum always can be used. However, sacrifice of a
lot of details is always the cost of this kind of method. Besides,
the boundary condition that hold in the case of center-of-sets
may not hold with mean-of-maximum.

Karnik and Mendel [27] have developed centroids for T2FS,
which is a T1FS. These T2FS centroids provide good represen-
tation of their original T2FS in many aspects. However, using
T2FS centroids in this Representative Method is not recom-
mended because these centroids do not bring representative at
element level. In another words, the generated T2FS centroids
will have different domains compare to the original T2FS.

B. Examples

1) Interval T2FS: Assume that Ã and B̃ are 2 interval
T2FS in universe X = {x1, x2, · · · , x8}. The secondary
membership functions of both sets are intervals defined as
below:

Ã =
{
[0.0, 0.2], [0.1, 0.3], [0.2, 0.4], [0.4, 0.7], [0.5, 1.0],

[0.6, 0.9], [0.4, 0.7], [0.3, 0.5]
}

and

B̃ =
{
[0.0, 0.3], [0.3, 0.5], [0.5, 0.7], [0.7, 1.0], [0.8, 0.9],

[0.5, 0.8], [0.3, 0.6], [0.2, 0.4]
}

Using Representation Method, 2 RFS Ä and B̈ can be
generated with finding and linking all corresponding center-
of-areas. With Eq. (10) and (13), we can find the interval of
approximate subsethood measure Ã ⊆ B̃ are [0.725, 0.963].
The expected value for this measurement generated by Eq.
(16) is 0.829.

2) General T2FS: Let Ã and B̃ are 2 interval T2FS
in universe X = {x1, x2, x3}. The secondary membership
function of each element is defined as a triangular as follow:

fx1
(u) =


(u− 0.4)/0.3 if 0.4 ≤ u ≤ 0.7,

(1.0− u)/0.3 if 0.7 < u ≤ 1.0,

0 otherwise

fx2(u) =


(u− 0.2)/0.2 if 0.2 ≤ u ≤ 0.4,

(0.7− u)/0.3 if 0.4 < u ≤ 0.7,

0 otherwise

fx3
(u) =


(u− 0.4)/0.3 if 0.4 ≤ u ≤ 0.7,

(0.8− u)/0.1 if 0.7 < u ≤ 0.8,

0 otherwise



gx1
(v) =


(v − 0.1)/0.3 if 0.1 ≤ v ≤ 0.4,

(0.5− v)/0.1 if 0.4 < v ≤ 0.5,

0 otherwise

gx2
(v) =


(v − 0.4)/0.2 if 0.4 ≤ v ≤ 0.6,

(0.9− v)/0.3 if 0.6 < v ≤ 0.9,

0 otherwise

gx3
(v) =


(v − 0.2)/0.5 if 0.2 ≤ v ≤ 0.7,

(0.9− v)/0.2 if 0.7 < v ≤ 0.9,

0 otherwise

In order to solve the problem with Representative Method,
we must find all the center-of-areas with Eq. (17) to form
Ä and B̈. Since the secondary membership functions are
continuous instead of discrete, we replace

∑
in Eq. (17) with∫

. We should find Ä = {1.00/0.70, 0.89/0.43, 0.78/0.63} and
B̈ = {0.78/0.33, 0.89/0.63, 0.80/0.60}. With Eq. (23) - (25),
we can find subl = 0.520, subm = 0.710 and subu = 0.870.
For the calculation of membership function of subsethood
measure, we use Eq. (26) to find δ = 0.780. So, the set
representing the subsethood measure Ã ⊆ B̃ is a triangle:

µC(y) =


(y − 0.520)/0.244 if 0.520 ≤ y ≤ 0.710,

(0.870− y)/0.205 if 0.710 < y ≤ 0.870,

0 otherwise

V. CONCLUSION

We pointed out an important but unattended property of
fuzzy sets in this paper, namely multi descriptions property.
The property has direct impact on many basic operations of
fuzzy sets, such as union, intersection and subsethood.

The popular min and max functions as measurement of
intersection and union in both T1FS and T2FS may bring
incomplete results in the present of the multi description
property. With Checklist Paradigm, the problem can be solved
easily by adopting algebraic product and algebraic sum as
replacements in both t-norm and t-conorm.

For subsethood measurement, Bandler and Kohout’s defini-
tions which based on implication operators were recalled to
solve the problem of T1FS. We extended the solutions to T2FS
with Representative Method.

Although the multi descriptions property is not present on
all fuzzy sets, but adopting the concern on it may help in
developing more general fuzzy systems.
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