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Abstract

In this paper, an extended fourth-order Runge–Kutta method is studied to approximate the solutions of first-order fuzzy differ-
ential equations using a generalized characterization theorem. In this method, new parameters are utilized in order to enhance the 
order of accuracy of the solutions using evaluations of both f and f ′, instead of using the evaluations of f only. The proposed 
extended Runge–Kutta method and its error analysis, which guarantees pointwise convergence, are given in detail. Furthermore, 
the accuracy and efficiency of the proposed method are demonstrated in a series of numerical experiments.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy differential equations (FDEs) have been actively researched through the modeling of many exciting real-
world problems in all branches of science and engineering, including hydraulic systems, population models, medicine, 
modeling of periodic phenomena through fuzzy systems etc. [20,37,13,12,40,43].

Initially, the concept of the fuzzy-valued function was introduced by Chang and Zadeh [29]. From this, Dubois 
and Prade [30] developed the approach by utilizing an extension principle. Thereafter, Puri and Ralescu [56] extended 
the concept of Hukuhara differentiability (H-differentiability) for set-valued functions to the class of fuzzy functions. 
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Thereafter, Kaleva [42] and Seikkala [59] used H-differentiability to develop some theorems of differential equations 
for FDEs.

In recent years, several pieces of research have been performed in order to investigate the theoretical foundations of 
FDEs in different classifications, such as the Cauchy problem of FDEs [60], fuzzy integro-differential equations [8], 
fuzzy relational equations [11], fuzzy functional differential equations [46], existence and uniqueness of solutions for 
fuzzy random differential equations [47], fuzzy stochastic differential equations [32] and fuzzy fractional differential 
equations [2,9]. Moreover, there have been many papers dedicated to the numerical solutions of FDEs [3,7,33], hy-
brid FDEs [6,54] and fuzzy fractional differential equations [4,5,58]. Specifically, Runge–Kutta (RK) methods were 
applied to solve FDEs under H-differentiability notion [1,34,52,53].

Unfortunately, the meaning of H-differentiability is defective such that the solutions of an FDE always have an 
increasing length of the support. This means that the diameter diam x(t) of the solution is unbounded as t → ∞ [35]. 
This circumstance leads to the conclusion that uncertainty of a fuzzy dynamical system increases chronologically. As 
a result, there has been immense efforts to establish the most suitable derivative for FDEs. Buckley and Feuring [21]
applied Zadeh’s extension principle for solving FDEs, but the lengths of its solution’s support sets were also growing 
rapidly in most cases. This deficiency was solved by expounding an FDE as a set of differential inclusions [27,
45]. Mizukoshi et al. [50] provided a comparison between finding the fuzzy solution of FDEs via Zadeh’s extension 
principle and a family of differential inclusions. Our present research is not formed based on these concepts because 
the numerical work is not very well understood in these cases and an alien concept of derivative arises.

To overcome this, Bede and Gal [14] presented a concept of generalized H-differentiability of fuzzy-valued map-
pings which permits them to obtain the solutions of FDEs with a diminishing diameter of solutions values. This was 
followed up in the literature [15,16,19,23,25,28,48]. This comprehensive definition allows us to resolve the aforemen-
tioned disadvantages. Indeed, the strongly generalized derivative is defined for a larger class of fuzzy-number-valued 
functions than in the case of the Hukuhara derivative (H-derivative). In addition, some applications of generalized 
H-differentiability to the numerical solutions of FDEs were presented in [43,51]. Recently, Stefanini and Bede [61,
62] with reference to the concept of generalization of the Hukuhara difference (H-difference) introduced generalized 
H-differentiability for interval valued functions. They concluded that this concept of differentiability has relationships 
with weakly generalized differentiability and strongly generalized H-differentiability. Furthermore, in [24], the authors 
studied the relationships between the strongly generalized H-differentiability and the generalized H-differentiability, 
showing the equivalence between these two concepts when the set of switching points of the interval valued function 
is finite. Therefore, to keep our task manageable, we confine it to considering the generalized H-differentiability, and 
provide an example with finite switching points to illustrate the later definition.

On the other hand, attempts have been made to reconstruct the classical RK methods due to the order of the method 
[31]. In addition, almost all RK methods were discussed in [22] – that the idea of these methods is to preserve the 
multi-stage nature of RK methods and permit more than one value to be passed from stage to stage. In addition, 
Phohomsiri and Udwadia [55] introduced the Accelerated RK method for solving ordinary differential equations 
(ODEs), which was studied completely in [63]. The nature of this method is to reuse previously calculated data and 
therefore it cannot be self-starting. In a different approach, Jackiewicz et al. [38] derived the two-step RK (TSRK) 
method. A more general category of these TSRK methods has been explained by Jackiewicz and Tracogna [39]. 
An alternative approach considered by Goeken et al. [36] proposed a class of RK methods using higher derivatives. 
In [64], the authors extended this technique to obtain the two step RK that can be regraded as the ‘derivative-free’ 
extended RK (ERK) method. Recently, Jikantoro et al. [41] derived the generalization of the ERK methods for solving 
non-autonomous ODEs. The ERK methods are more effective for cases where f ′(x, y) or y′′ is of lower evaluation 
cost than f , which for a large class of fuzzy ordinary differential equations (FODEs) is very important. It is important 
to mention here that an obvious advantage of this technique is that only three evaluations of f are required per step, 
which reduces the computational cost dramatically. In contrast, arbitrary classical RK methods of order four would 
demand four evaluations of f per step. This partially motivates our interest, set out in this paper, to apply a family of 
ERK methods for solving FODEs.

The aim of this paper is to exploit ERK methods for solving non-autonomous systems as well as autonomous 
systems of FODEs under strongly generalized H-differentiability. We note that the application of ERK methods for 
solving autonomous FODEs has been introduced by Ghazanfari and Shakerami [34] under H-differentiability. How-
ever, most of the FODEs are expressed by non-autonomous systems. To this end, our proposed method uses the new 
terms of k(j) (i = 1, .., 4 and j = 1, 2) in order to derive the fourth-order ERK method for non-autonomous FODEs 
i
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systems. Hence, it must handle a multitude of details – not only the use of first order derivatives f ′ and suitable error 
estimates, but also the selection of fuzzy differentiability type to ensure that the proposed formula can be employed 
in an adaptive style for the non-autonomous FODEs systems. To demonstrate the trustworthiness of the technique in 
the form of the adaptive version for both FODEs systems, we state and prove the convergence theory of the method. 
It is worth noting here that to solve numerical FODEs under fuzzy differentiability, we must solve two ODEs systems 
simultaneously in order to achieve the fuzzy approximate solution. This takes considerable computational cost. Thus, 
a numerical technique with low cost is highly desirable and is proposed in the current study as a way to overcome this 
deficiency in the literature.

Furthermore, another aspect that motivates this research is the numerical solution of FODEs under generalized 
H-differentiability. In this regard, we focus our interest in terms of generalized H-differentiability and analyze the 
results in comparison with H-differentiability for autonomous and non-autonomous systems of FODEs. Therewith, 
a characterization theorem presented by Bede [17] is used, which describes that a FDE under H-differentiability is 
equivalent to a system of ODEs under certain conditions that is appropriate for solving FDEs numerically. As a matter 
of fact, we exploit the extension of the characterization theorem which was introduced by Bede and Gal [18] to 
replace the FDE with its equivalent systems under generalized H-differentiability, and then solve two ODEs systems 
numerically by employing the proposed fourth-order ERK method.

The importance of this study, from a theoretical point of view, as well as from numerical applications, is that the 
present RK method is developed for solving a general class of FODEs under generalized H-differentiability. This can 
be of great help in the numerical study of FODEs. It is also worthwhile pointing out that the method has a lower 
computational cost and a more appropriate approximate fuzzy solution in comparison with the previous established 
papers [1,34]. It is based on the fact that the numerical results are built based on a well-defined combination of 
the generalized H-differentiability and a low cost fourth-order RK method. Moreover, we consider a fuzzy logistic 
equation that allows a switch between two concepts of fuzzy differentiability and solve it by using the fourth-order 
ERK method. To date, and to the best of our knowledge, this approach is limited and still traceless in the literature.

This paper is organized as follows: Section 2 contains preliminaries of the fuzzy number, fuzzy-valued function 
and H-differentiability. Additionally, the fourth-order ERK method is explained concisely under the non-fuzzy con-
dition in this section. In Section 3, the fourth-order ERK method for solving FODEs is described under generalized 
H-differentiability, and the convergence conditions are provided. To demonstrate the validation and efficiency of the 
proposed method, a number of examples are solved. We give a brief summary of our results in Section 4. Finally, 
conclusions are drawn in Section 5.

2. Preliminaries

2.1. Basic definitions

In this section, the most important basic definitions of the notation used in fuzzy calculus and FODEs are recalled, 
as given in [33,49,56]. We consider R as the set of all real numbers. A fuzzy number is a mapping u :R → [0, 1] with 
the following properties:
(a) u is upper semi-continuous,
(b) u is fuzzy convex, i.e., u(λx + (1 − λ)y ≥ min{u(x), u(y)} for all x, y ∈R, λ ∈ [0, 1],
(c) u is normal, i.e., ∃ x0 ∈ R for which u(x0) = 1,
(d) supp u = {x ∈ R|u(x) > 0} is the support of u, and its closure cl(supp u) is compact.

Let E be the set of all fuzzy numbers on R. The r-level set of a fuzzy number u ∈E, 0 ≤ r ≤ 1, denoted by [u]r , is 
defined as

[u]r =
{ {x ∈R|u(x) ≥ r} if 0 < r ≤ 1

cl(supp u) if r = 0

It is clear that the r-level set of a fuzzy number is a closed and bounded interval [u(r), u(r)], where u(r) denotes the 
left-hand endpoint of [u]r . Since each y ∈R can be regarded as a fuzzy number, ̃y is defined by

ỹ(t) =
{

1 if t = y

0 if t 
= y
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For u, v ∈ E and λ ∈ R, the sum u + v and the product λ � u are defined by [u + v]r = [u]r + [v]r , [λ � u]r =
λ[u]r , ∀r ∈ [0, 1], where [u]r + [v]r means that the usual addition of two intervals (subsets) of R and λ[u]r results in 
the usual product between a scalar and a subset of R.

The Hausdorff distance fuzzy numbers are given by D : E ×E −→R+ ∪ {0},
D(u,v) = sup

r∈[0,1]
max{|u(r) − v(r)|, |ū(r) − v̄(r)|},

It is easy to see that D is a metric in E and has the following properties [56]
(i) D(u ⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ E,
(ii) D(k � u, k � v) = |k|D(u, v), ∀k ∈ R, u, v ∈ E,
(iii) D(u ⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e), ∀u, v, w ∈ E,
(iv) (E, D) is a complete metric space.

Initially, the H-derivative for fuzzy mappings was introduced by Puri and Ralescu [56], and is based on the H-
difference sets, as follows:

Definition 2.1. Let x, y ∈ E. If there exists z ∈ E such that x = y ⊕ z, then z is called the H-difference of x and y, and 
it is denoted by x � y.

In this paper, the sign “�” stands for H-difference. Also note that x � y 
= x + (−1)y.

Definition 2.2. Let f : R → E be a fuzzy function. We say f is differentiable at t0 ∈ R, if there exists an element 
f ′(t0) ∈ E such that limits

lim
h→0+

f (t0 + h) � f (t0)

h
and lim

h→0+
f (t0) � f (t0 − h)

h

exist and are equal to f ′(t0). Here, the limits are taken in the metric space (E, D).

The above definition is a generalization of the H-differentiability of a set-valued function. From [35], it follows 
that a H-differentiable function has increasing length of support, so this definition of a derivative is very restrictive. In 
this regard, Bede and Gal [15] introduced a more generalized definition of H-differentiability which is our interest in 
this paper.

Definition 2.3. Let f : (a, b) → E and x0 ∈ (a, b). We say that f is strongly generalized H-differentiable at x0 if there 
exists an element f ′(x0) ∈ E, such that
(i) for all h > 0 sufficiently small, ∃f (x0 + h) � f (x0), ∃f (x0) � f (x0 − h) and limits (in the metric D)

lim
h↘0

f (x0 + h) � f (x0)

h
= lim

h↘0

f (x0) � f (x0 − h)

h

= f ′(x0)

or
(ii) for all h > 0 sufficiently small, ∃f (x0) � f (x0 + h), ∃f (x0 − h) � f (x0) and limits (in the metric D)

lim
h↘0

f (x0) � f (x0 + h)

−h
= lim

h↘0

f (x0 − h) � f (x0)

−h

= f ′(x0)

or
(iii) for all h > 0 sufficiently small, ∃f (x0 + h) � f (x0), ∃f (x0 − h) � f (x0) and limits (in the metric D)

lim
h↘0

f (x0 + h) � f (x0)

h
= lim

h↘0

f (x0 − h) � f (x0)

−h

= f ′(x0)
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or
(iv) for all h > 0 sufficiently small, ∃f (x0) � f (x0 + h), ∃f (x0) � f (x0 − h) and limits (in the metric D)

lim
h↘0

f (x0) � f (x0 + h)

−h
= lim

h↘0

f (x0) � f (x0 − h)

h

= f ′(x0)

Bede [17] defined the Characterization Theorem that provides certain conditions under which a FDE is equivalent 
to a system of ODEs with respect to H-differentiability. Thereafter, Bede and Gal [18] proposed another version of this 
theorem for solving FDEs under generalized H-differentiability. Both of these characterization theorems are employed 
in the rest of this report to transfer the FODEs under fuzzy differentiability to ODEs systems.

As it is stated in [25,26,50,54], by Zadeh’s extension principle, we obtain a fuzzy function generated from a 
non-fuzzy function f (t, x(t)) over t ∈ [a, b]. Hence, the fuzzy initial value problem (FIVP) can be presented as 
follows:{

x′(t) = f (t, x(t)), t ∈ [a, b],
x(a) = x0,

(2.1)

where x0 ∈ E and f : [a, b] ×E → E is a fuzzy continuous function obtained by applying Zadeh’s extension principle 
to the real function f : [a, b] ×R → R.

From the approach proposed in [57] we have:

[f (t, x(t))]r = f (t, [xr , xr ]) = [ min
r∈[0,1]

f (t, [xr , xr ]), max
r∈[0,1]

f (t, [xr , xr ])],

or in an expanded parametric form, used throughout the paper, this can be presented by

[f (t, x(t))]r = [f r(t, xr (t), xr(t)), f r(t, xr (t), xr (t))].

Definition 2.4. Let f : (a, b) → E. We say f is (i)-differentiable on (a, b) if f is differentiable with the meaning (i) 
of Definition 2.3 and similarly for (ii)-differentiability in Definition 2.3, case (ii).

Theorem 2.1. ([23]) Let f : (a, b) → E be a function and denote f (t) = (f (t; r), f (t; r)), for each r ∈ [0, 1]. Then

(1) If f is (i)-differentiable, then f (t; r) and f (t; r) are differentiable functions and

f ′(t) = (f ′(t; r), f ′(t; r)) (2.2)

(2) If f is (ii)-differentiable, then f (t; r) and f (t; r) are differentiable functions and

f ′(t) = (f ′(t; r), f ′(t; r)) (2.3)

Definition 2.5. ([61]) We say that a point t0 ∈ (a, b) is a switching point for the differentiability of f (t; r), if in any 
neighborhood V of t0 there exist points t1 < t0 < t2, ∀r ∈ [0, 1] such that

(type I) at (t1; r) (2.2) holds while (2.3) does not hold and at (t2; r) (2.3) holds and (2.2) does not hold, or

(type II) at (t1; r) (2.3) holds while (2.2) does not hold and at (t2; r) (2.2) holds and (2.3) does not hold.

By using Theorem 2.1, and the first type of characterization theorem [17], under certain conditions we may replace 
(2.1) by an equivalent ODEs system when x(t) is considered as (i)-differentiable fuzzy-valued function:{

x′(t; r) = f r(t, x) ≡ F(t, xr , xr ), x(a; r) = x0
r ,

x′(t; r) = f r(t, x) ≡ G(t, xr , xr ), x(a; r) = x0
r ,

(2.4)

furthermore, by applying the second type of characterization theorem [18], FIVP (2.1) is equivalent with the union of 
the following two ODEs, if x(t) is (ii)-differentiable fuzzy-valued function:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x(t; r))′ = f r(t, xr , xr ),

(x(t; r))′ = f r(t, xr , xr ),

x(a; r) = (xr
0),

x(a; r) = (xr
0),

, r ∈ [0,1] (2.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x(t; r))′ = f r(t, xr , xr ),

(x(t; r))′ = f r(t, xr , xr ),

x(a; r) = (xr
0),

x(a; r) = (xr
0),

, r ∈ [0,1] (2.6)

where x′(t, r) and x′(t, r) are variables for each r ∈ [0, 1].

2.2. The fourth-order ERK method

In this section, we explain the fourth-order ERK method in terms of crisp notion, which is introduced for au-
tonomous ODEs systems in [64] and for non-autonomous ODEs in [41]. Firstly, the fourth-order ERK method for 
autonomous systems is discussed, then the proposed method is briefly described for non-autonomous systems.

Consider the autonomous IVP as:{
dy
dx

= f (y),

y(a) = y0, x ∈ [a, b]. (2.7)

We consider the fourth-order ERK formula which has the following form

yn+1 = yn + h(b1k
(1)
1 + b2k

(1)
2 + b3k

(1)
3 ) + h2(c1k

(2)
1 + c2k

(2)
2 + c3k

(2)
3 ), (2.8)

where

k
(1)
1 = f (yn), k

(1)
2 = f (yn + ha21k

(1)
1 ), k

(1)
3 = f (yn + ha31k

(1)
1 + ha32k

(1)
2 ),

k
(2)
1 = f ′(yn), k

(2)
2 = f ′(yn + hb21k

(1)
1 ), k

(1)
3 = f ′(yn + hb31k

(1)
1 + hb32k

(1)
2 ). (2.9)

The specific formula for autonomous ODEs systems after determining the coefficients of Equations (2.8) and (2.9)
are as follows:

yn+1 = yn + hfn + 1

6
h2f ′

n + 1

3
h2f ′

n(yn + 1

2
hf (yn + 1

4
hfn)),

or

yn+1 = yn + hk
(1)
1 + 1

6
h2k

(2)
1 + 1

3
h2k

(2)
3 ,

with local truncation error

T (t, h) = y(tn+1) − yn+1 = h5

2880
(4fyyyyf

4
n + 28fyfyyyf

3
n + 21f 2

yyf
3
n + 69f 2

y fyyf
2
n + 24f 4

y fn) + O(h6),

where fn = f (yn), f ′
n = fy(yn)f (yn).

Remark 2.1. ([64]) The stability region of the formula (2.8) using two function evaluations of f ′ is similar to the 
classical fourth-order ERK method, since it has the same stability polynomials.

Let us consider the non-autonomous ODE system in the following form:{
dy
dx

= f (x, y(x)),

y(a) = y0, x ∈ [a, b]. (2.10)

The fourth-order ERK method for the problem (2.10) is determined as:
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k
(1)
1 = f (xn, yn), k

(1)
2 = f (xn + 1

2h,yn + h
2 k

(1)
1 ),

k
(1)
3 = f (xn + h,yn + hk

(1)
2 ), k

(1)
4 = f (xn + 2

5h,yn + 7h
25 k

(1)
1 + 2h

25 k
(1)
2 + h

25k
(1)
3 ),

(2.11)

and

k
(2)
1 = f ′(xn, yn), k

(2)
2 = f ′(xn + 1

2h,yn + h
2 k

(1)
1 ),

k
(2)
3 = f ′(xn + h,yn + hk

(1)
2 ), k

(2)
4 = f ′(xn + 2

5h,yn + 7h
25 k

(1)
1 + 2h

25 k
(1)
2 + h

25k
(1)
3 ),

(2.12)

or in a concise form as:

yn+1 = yn + hf (xn, yn) + 1
8h2f ′(xn, yn) + 1

36h2f ′(xn + h,yn + hf (xn + h
2 , yn + h

2 f (xn, yn)))

+ 25
72h2f ′(xn + 2h

5 , yn + h
25 (7f (xn, yn) + 2f (xn + h

2 , yn + h
2 f (xn, yn))

+ f (xn + h,yn + hf (xn + h
2 , yn + h

2 f (xn, yn))))).

(2.13)

Also, the local truncation error of the method is described by

LT E = h5

720 {f 4
y f + f 3

y fx + fyyfyfxf + fxyfyfx − 4(f 2
y fxx + fxyfxx + f 2

yyf
3 + f fyyfxx)

− 8f 2
xyf − 12fxyfyyf

2 − 7fxyf
2
y f − 3fyyf

2
y f 2} + O(h6).

Remark 2.2. According to Lotkin [44], if the following bounds for f and its partial derivatives retain for x ∈ [a, b]
and y ∈ [−∞, ∞], we have

|f (x, y)| < Q, |∂
i+j f (x, y)

∂xi∂yj
| < P i+j

Qj−1
, i + j ≤ p, (2.14)

where P and Q are positive constants and p is the order of the method. So for the proposed method described in 
Equation (2.13), we have p = 4. Considering Eq. (2.13), we can gain an upper bound for the local truncation error as 
follows:

|f 4
y f | < Q(P 0+1

Q1−1 )
4

|f 3
y fx | < (P 0+1

Q1−1 )
3
( P 1+0

Q0−1 )

|fyyfyfxf | < Q(P 1+1

Q2−1 )( P 0+1

Q1−1 )( P 1+0

Q0−1 )

|fxyfyfx | < (P 1+1

Q1−1 )( P 0+1

Q1−1 )( P 1+0

Q0−1 )

|f 2
y fxx | < (P 0+1

Q1−1 )
2
( P 1+1

Q0−1 )

...

fyyf
2
y f 2 < Q2( P 1+1

Q2−1 )( P 0+1

Q1−1 )
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

P 4Q... (2.15)

From the Eqs. (2.13)–(2.15), we acquire

|LT E| ≤ 7

120
P 4Qh5. (2.16)

3. The solution method

The contribution of this section is devoted to the generalization of the fourth-order ERK method for solving FODEs 
under generalized H-differentiability by employing the characterized theorems. Furthermore, the convergence theorem 
of the method is provided for non-autonomous and autonomous FODEs systems, respectively.

Now we consider the fuzzy approach of this method for solving non-autonomous FIVP (2.1). For a fixed r , in 
order to integrate the system given in (2.5) or (2.6) over the interval [0, A], we discretize equally spaced grid points 
0 = t0 < t1 < ... < tN = A where the exact solution at tn is approximated by y1n(tn; r) = [y1n

(tn; r), y1n(tn; r)] such 
that
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tn = t0 + nh, h = A

N
, 0 ≤ n ≤ N.

Denote the exact solution of system (2.5) at grid point tn by [Y1n
(tn; r), Y1n(tn; r)] and similarly for the sys-

tem (2.6) by [Y2n
(tn; r), Y2n(tn; r)]. Assume that the approximate solutions are indicated at tn by y1n(tn; r) =

[y1n
(tn; r), y1n(tn; r)] and y2n(tn; r) = [y2n

(tn; r), y2n(tn; r)] under (i) and (ii)-differentiability, respectively.
The fourth-order ERK method under generalized H-differentiability for autonomous fuzzy systems is the 

fourth-order approximation of Y1
′
n
(tn; r), Y ′

1n(tn; r),Y2
′
n
(tn; r), Y ′

2n(tn; r) which can be written for the case of 
(i)-differentiability as:⎧⎨⎩ y1n+1

(tn+1; r) = y1n
(tn; r) + hk1

(1)
1 + h2

8 k1
(2)
1 + h2

36k3
(2)
1 + 25h2

72 k4
(2)
1 ,

y1n+1(tn+1; r) = y1n(tn; r) + hk1
(1)
1 + h2

8 k1
(2)
1 + h2

36k3
(2)
1 + 25h2

72 k4
(2)
1 ,

(3.17)

in which⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1
(1)
1 = f (tn, y1n(tn; r)), k1

(1)

1 = f (tn, y1n(tn; r)),
k1

(2)
1 = f ′(tn, y1n(tn; r)), k1

(2)

1 = f ′(tn, y1n(tn; r)),
k3

(2)
1 = f ′(tn + h,y1n(tn; r) + hk2

(1)), k3
(2)

1 = f ′(tn + h,y1n(tn; r) + hk2
(1)),

k4
(2)
1 = f ′(tn + 2h

5 , y1n(tn; r) + 7h
25 k1

(1) + 2h
25 k2

(1) + h
25k3

(1)),

k4
(2)

1 = f ′(tn + 2h
5 , y1n(tn; r) + 7h

25 k1
(1) + 2h

25 k2
(1) + h

25k3
(1)),

(3.18)

and k1
(1) = [k1

(1)
1 , k1

(1)

1 ], k2
(1) = [k2

(1)
1 , k2

(1)

1 ], ..., k4
(2) = [k4

(2)
1 , k4

(2)

1 ]. It is worth noting that f ′(tn, y1n(tn; r)) is a 
partial derivative with respect to t that, in the expanded form, is

f ′(tn, y1n(t; r)) = ftn + fy1n

dy1n(tn; r)
dtn

,

in which y1n(tn; r) = [y1n
(tn; r), y1n(tn; r)].

Also, in terms of (ii)-differentiability we obtain the following equations:⎧⎨⎩ y2n+1
(tn+1; r) = y2n

(tn; r) + hk1
(1)
1 + h2

8 k1
(2)
2 + h2

36k3
(2)
2 + 25h2

72 k4
(2)
2 ,

y2n+1(tn+1; r) = y2n(tn; r) + hk1
(1)
1 + h2

8 k1
(2)
2 + h2

36k3
(2)
2 + 25h2

72 k4
(2)
2 ,

(3.19)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1
(1)
2 = f (tn, y2n(tn; r)), k1

(1)

2 = f (tn, y2n(tn; r)),
k1

(2)
2 = f ′(tn, y2n(tn; r)), k1

(2)

2 = f ′(tn, y2n(tn; r)),
k3

(2)
2 = f ′(tn + h,y2n(tn; r) + hk2

(1)), k3
(2)

2 = f ′(tn + h,y2n(tn; r) + hk2
(1)),

k4
(2)
2 = f ′(tn + 2h

5 , y2n(tn; r) + 7h
25 k1

(1) + 2h
25 k2

(1) + h
25k3

(1)),

k4
(2)

2 = f ′(tn + 2h
5 , y2n(tn; r) + 7h

25 k1
(1) + 2h

25 k2
(1) + h

25k3
(1)),

(3.20)

and y10
(r) = x(0; r), y10(r) = x(0; r), y20

(r) = x(0; r), y20(r) = x(0; r). Hence, (3.17) and (3.19) represent the ap-
proximation of Y1(r) and Y2(r). Let r ∈ [0, 1]. For the convergence of (3.17) and (3.19) the following relations hold:⎧⎨⎩

lim
h→0

y1n
(tn; r) = x(t; r); lim

h→0
y1n(tn; r) = x(t; r),

lim
h→0

y2n
(tn; r) = x(t; r); lim

h→0
y2n(tn; r) = x(t; r),

which is an application of Theorem 1 in Bede [17], Theorem 4.3 in [51] and Lemmas 1 and 2 in [49] as follows.
Let F(u, v) and G(u, v) be the functions F and G of Eqs. (2.5) and (2.6) where u and v are constants and u ≤ v. 

The domain where F and G are defined is given by

K = {(u, v)| − ∞ < v < ∞,−∞ < u ≤ v}.



A. Ahmadian et al. / Fuzzy Sets and Systems 331 (2018) 47–67 55
Theorem 3.1. Consider the system (2.5) and (3.17) or system (2.6) and (3.19), r ∈ [0, 1]⎧⎨⎩
lim
h→0

y1n
(tn; r) = x(t; r); lim

h→0
y1n(tn; r) = x(t; r),

lim
h→0

y2n
(tn; r) = x(t; r); lim

h→0
y2n(tn; r) = x(t; r), (3.21)

provided that in each step, y1n(tn; r) = [y1n
(tn; r), y1n(tn; r)] and y2n(tn; r) = [y2n

(tn; r), y2n(tn; r)] define a fuzzy-
valued function. Additionally, the conditions stated in the characterization theorems hold for f .

Proof. By considering the approximate solution (3.21), it is sufficient to show

lim
h→0

y1n
(tn; r) = x(t; r),

lim
h→0

y1n(tn; r) = x(t; r). (3.22)

where tN = T . For n = 1, ..., N − 1, by using the exact solution, the following outcome will be obtained:

x(tn+1; r) = x(tn; r) + F(x(tn; r), x(tn; r)) + 7h5

120P 4Q + O(h6),

x(tn+1; r) = x(tn; r) + G(x(tn; r), x(tn; r)) + 7h5

120P 4Q + O(h6).
(3.23)

Denote

Wn = x(tn; r) − y1n
(tn; r), Vn = x(tn; r) − y1n(tn; r).

Therefore, from Eqs. (3.17) and (3.23), we achieve

Wn+1 = Wn + F(x(tn; r), x(tn; r)) − F(y1n
(tn; r), y1n(tn; r)) + 7h5

120P 4Q + O(h6),

Vn+1 = Vn + G(x(tn; r), x(tn; r)) − G(y1n
(tn; r), y1n(tn; r)) + 7h5

120P 4Q + O(h6).

Then, we have

|Wn+1| ≤ |Wn| + 2L1hmax{|Wn|, |Vn|} + 7h5

120P 4Q + O(h6),

|Wn+1| ≤ |Vn| + 2L2hmax{|Vn|, |Vn|} + 7h5

120P 4Q + O(h6),

and assuming L = max{L1, L2},
|Wn+1| ≤ |Wn| + 2Lhmax{|Wn|, |Vn|} + 7h5

120P 4Q + O(h6),

|Wn+1| ≤ |Vn| + 2Lhmax{|Vn|, |Vn|} + 7h5

120P 4Q + O(h6),

are derived, where |Un| = |Wn| + |Vn|. Hence, by Lemma 2 in [49], without loss of generality, we have that

|Un| ≤ (1 + 4Lh)N |U1| + (
7h5

120
P 4Q + O(h6))

(1 + 4Lh)n − 1

4Lh
.

Since W1 ≈ 0, V1 ≈ 0

|Un| ≤ (
7h5

120
P 4Q)

e4LT − 1

L
+ O(h6),

and if h → 0, we get to WN → 0, VN → 0 which completes the proof. �
Remark 3.1. The proof of Theorem 3.1 for the approximate solution (3.19) under (ii)-differentiability is quite similar 
to the demonstration of the proof under the (i)-differentiability assumption.

In a similar way, we describe the fourth-order ERK formula for solving autonomous FODEs. This method has 
been applied under H-differentiability in [34]. Here, the method is developed under generalized H-differentiability by 
considering the generalized characterization theorem [18].
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Let us consider the autonomous FODE as follows:{
y′(t) = f (y(t)),

y(0) = y0 t ∈ I = [0, T ], y0 ∈ E.
(3.24)

The fourth-order ERK method can be formulated with respect to (3.24) as follows:
case (i)-differentiability as:⎧⎨⎩ y1n+1

(tn+1; r) = y1n
(tn; r) + hk1

(1)
1 + h2

6 k1
(2)
1 + h2

3 k3
(2)
1 ,

y1n+1(tn+1; r) = y1n(tn; r) + hk1
(1)
1 + h2

6 k1
(2)
1 + h2

3 k3
(2)
1 ,

(3.25)

and for case (ii)-differentiability, we reach the following equations:⎧⎨⎩ y2n+1
(tn+1; r) = y2n

(tn; r) + hk1
(1)
2 + h2

6 k1
(2)
2 + h2

3 k3
(2)
2 ,

y2n+1(tn+1; r) = y2n(tn; r) + hk1
(1)
2 + h2

6 k1
(2)
2 + h2

3 k3
(2)
2 ,

(3.26)

where k1
(1)
1 , k1

(2)
1 , k3

(2)
1 , k1

(1)
2 , k1

(2)
2 , k3

(2)
2 for (i) and (ii)-differentiability, respectively, are as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k1
(1)
1 = f (y1n(tn; r)), k1

(1)

1 = f (y1n(tn; r)),
k1

(2)
1 = f ′(y1n(tn; r)), k1

(2)

1 = f ′(y1n(tn; r)),
k3

(2)
1 = f ′(y1n(tn; r) + 1

2h f (y1n(tn; r) + 1
4hf (y1n(tn; r)))),

k3
(2)

1 = f ′(y1n(tn; r) + 1
2h f (y1n(t; r) + 1

4hf (y1n(tn; r)))),

(3.27)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k1
(1)
2 = f (y2n(tn; r)), k1

(1)

2 = f (y2n(tn; r)),
k1

(2)
2 = f ′(y2n(tn; r)), k1

(2)

2 = f ′(y2n(tn; r)),
k3

(2)
2 = f ′(y2n(tn; r) + 1

2h f (y2n(tn; r) + 1
4hf (y2n(tn; r)))),

k3
(2)

2 = f ′(y2n(tn; r) + 1
2h f (y2n(tn; r) + 1

4hf (y2n(tn; r)))),

(3.28)

in which f ′(y1n(tn; r)) and f ′(y2n(tn; r)) are partial derivatives with respect to t that can be written in the expanded 
form as:

f ′(y1n
(tn, r), y1n(tn, r)) = min

u∈[y1n
(tn,r),y1n(tn,r)]{fu.

du

dtn
|r ∈ [0,1]},

f ′(y1n
(tn, r), y1n(tn, r)) = max

u∈[y1n
(tn,r),y1n(tn,r)]

{fu.
du

dtn
|r ∈ [0,1]},

and in a similar way, it can be written for f ′(y2n(tn; r)).

Theorem 3.2. Consider the system (2.5) and (3.25) or system (2.6) and (3.26), r ∈ [0, 1]⎧⎨⎩
lim
h→0

y1n
(tn; r) = x(t; r); lim

h→0
y1n(tn; r) = x(t; r),

lim
h→0

y2n
(tn; r) = x(t; r); lim

h→0
y2n(tn; r) = x(t; r), (3.29)

provided that in each step, y1n(tn; r) = [y1n
(tn; r), y1n(tn; r)] and y2n(tn; r) = [y2n

(tn; r), y2n(tn; r)] define a fuzzy-
valued function. Also, the conditions stated in the characterization theorems hold for f .

Proof. If system (2.5) and (3.25) or system (2.6) and (3.26) are considered, then we can prove the convergence of the 
method according to the demonstration of Theorem 3.1 and Theorem 4.3 in [34]. �
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4. Numerical examples

In this section, a number of numerical examples are given to demonstrate the effectiveness of the proposed method. 
The method is compared with the fourth-order classical ERK method under (i) and (ii)-differentiability. Moreover, the 
absolute error function, which is the difference between the fuzzy approximate solutions [yN ]r = [yr

N
, yr

N ] and the 

corresponding exact solutions y(t; r) = [y(t; r), y(t; r)] i.e. [Ne]r = [Nr
e,N

r
e] =

[
|yr

n
− yr |, |yr

n − yr |
]
, is provided 

for each of examples.

Remark 4.1. As it is stated in Theorem 2.5 in [18], the solution of FDEs is not unique. Although this may appear 
to be a disadvantage, this deficiency can be used as an advantage, since we may sometimes have the opportunity to 
choose the solution which is closer to the real system, and better reflects the behavior of the system. This advantage 
is shown by the following example.

Example 4.1. We consider the following FODE [52]:

y′(t) = cy(t), y(0) = y0, (4.30)

where y(t) and c = (−4/−3/−2) are fuzzy numbers. Also let I = [0, 1] and y(0; r) = [8 + 0.5r, 9 − 0.5r].

The analytical solution under (i)-differentiability is

Y1(t; r) = 1
2

[
(8 + 0.5r) − (9 − 0.5r)

√
4−r
2+r

]
e
√

(4−r)(2+r)t + 1
2

[
(8 + 0.5r) + (9 − 0.5r)

√
4−r
2+r

]
e−√

(4−r)(2+r)t

Y1(t; r) = 1
2

[
(9 − 0.5r) − (8 + 0.5r)

√
2+r
4−r

]
e
√

(4−r)(2+r)t + 1
2

[
(9 − 0.5r) + (8 + 0.5r)

√
2+r
4−r

]
e−√

(4−r)(2+r)t

The (ii)-solution is given by

Y2(t; r) = (8 + 0.5r)e−(2+r)t ,

Y2(t; r) = (9 − 0.5r)e−(4−r)t .

The approximate solution under (i)-differentiability by using Eqs. (3.25) and (3.27) is as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k1
(1)
1 = f (y1

r
n) = −(4 − r)y1

r
n,

k1
(1)

1 = f (y1
r
n) = −(2 + r)y1

r
n
,

k1
(2)
1 = f ′(y1n(tn; r)) = (4 − r)(2 + r)y1

r
n
,

k1
(2)

1 = f ′(y1n(tn; r)) = (4 − r)(2 + r)y1
r
n,

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k3
(2)
1 = f ′(y1n(tn; r) + 1

2h f (y1n(tn; r) + 1
4hf (y1n(tn; r))))

= (4 − r)(2 + r)[y1
r
n
− 1

2h(4 − r)y1
r
n + 1

8h(4 − r)(2 + r)y1
r
n
],

k3
(2)

1 = f ′(y1n(tn; r) + 1
2h f (y1n(tn; r) + 1

4hf (y1n(tn; r))))
= (4 − r)(2 + r)[y1

r
n − 1

2h(2 + r)y1
r
n
+ 1

8h(4 − r)(2 + r)y1
r
n].

Now, by employing formula (3.25) we have:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y1

r
n+1

= [1 + h2

2 (4 − r)(2 + r) + h4

24 (4 − r)2(2 + r)2]y1
r
n
− [h(4 − r) + h3

6 (4 − r)2(2 + r)]y1
r
n,

y1
r
n+1 = [1 + h2

2 (2 + r)(4 − r) + h4

24 (2 + r)2(4 − r)2]y1
r
n − [h(2 + r) + h3

6 (2 + r)2(4 − r)]y1
r
n
,

y1
r
0
= xr

0,

y r = xr ,
10 0
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Table 1
Approximate solution of the fourth-order ERK method (yr

1 ), exact solution (Y r
1 ) and absolute error function (Nr

e ) under (i)-differentiability at t = 1
for r ∈ [0, 1], Example 4.1.

r y1
r Y1

r Nr
e y1

r Y1
r Nr

e

0 −3.937800e1 −3.938288e1 4.887053e−3 2.871091e1 2.871421e1 3.290109e−3
0.1 −3.568715e1 −3.569184e1 4.692112e−3 2.703668e1 2.703995e1 3.270464e−3
0.2 −3.185046e1 −3.185487e1 4.409574e−3 2.507075e1 2.507393e1 3.175881e−3
0.3 −2.789779e1 −2.790183e1 4.045308e−3 2.282183e1 2.282483e1 3.003787e−3
0.4 −2.385973e1 −2.386334e1 3.607525e−3 2.030125e1 2.030401e1 2.753871e−3
0.5 −1.976738e1 −1.977048e1 3.106500e−3 1.752300e1 1.752543e1 2.428150e−3
0.6 −1.565199e1 −1.565455e1 2.554228e−3 1.450356e1 1.450558e1 2.030975e−3
0.7 −1.154477e1 −1.154674e1 1.964035e−3 1.126176e1 1.126333e1 1.568946e−3
0.8 −7.476534e0 −7.477884e0 1.350158e−3 7.818726e0 7.819776e0 1.050765e−3
0.9 −3.477425e0 −3.478152e0 7.272931e−4 4.197568e0 4.198055e0 4.870125e−4
1 4.233002e−1 4.231901e−1 1.101453e−4 4.233002e−1 4.231901e−1 1.101453e−4

in which the interval is divided into N = 10 equally spaced subintervals. It is necessary to mention here that 
f ′(y

1
r

n
, y1

r
n) is a partial derivative with respect to t .

Similarly, using Eqs. (3.26) and (3.28), the approximate solution of the problem (4.30) under (ii)-differentiability 
is given by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k1
(1)
2 = f (y2

r
n) = −(2 + r)y2

r
n
,

k1
(1)

2 = f (y2
r
n) = −(4 − r)y2

r
n,

k1
(2)
2 = f ′(y2n(tn; r)) = (2 + r)2y2

r
n
,

k1
(2)

2 = f ′(y2n(tn; r)) = (4 − r)2y2
r
n,

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k3
(2)
2 = f ′(y2n(tn; r) + 1

2h f (y2n(tn; r) + 1
4hf (y2n(tn; r))))

= (2 + r)2y2
r
n
[1 − 1

2h(2 + r) + 1
8h(2 + r)2],

k3
(2)

2 = f ′(y2n(tn; r) + 1
2h f (y2n(tn; r) + 1

4hf (y2n(tn; r))))
= (4 − r)2y2

r
n[1 − 1

2h(4 − r) + 1
8h(4 − r)2].

By exploiting formula (3.26) we have:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y2

r
n+1

= [1 − h(2 + r) + h2

2 (2 + r)2 − h3

6 (2 + r)3 + h4

24 (2 + r)4]y2
r
n
,

y2
r
n+1 = [1 − h(4 − r) + h2

2 (4 − r)2 − h3

6 (4 − r)3 + h4

24 (4 − r)4]y2
r
n,

y2
r
0
= xr

0,

y2
r
0 = xr

0,

in which the interval is divided into N = 10 equally spaced subintervals. f ′(y
1
r

n
, y1

r
n) is a partial derivative with 

respect to t .
The (i) and (ii)-exact and approximate solutions, given by the fourth-order ERK method, are shown in Tables 1

and 2 at t = 1. Alongside this, the absolute error functions (Nr
e ) are presented to demonstrate the high accuracy of 

the proposed technique under both types of fuzzy differentiability. Fig. 1 displays the fuzzy approximation of the 
fourth-order ERK method and the exact solution under both types of fuzzy differentiability at t = 1 for r ∈ [0, 1]. It is 
clear that the approximate solution is in excellent agreement with the exact solution. Moreover, the width of the fuzzy 
solution under (i)-differentiability is considerably greater than the other.

Example 4.2. Let us consider an electrical circuit (RL circuit) with an AC source. As can be seen in Fig. 2, RL circuits 
are circuits that contain both an inductor (L) and a resistor (R). The resistor and inductor are in series with one another. 
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Table 2
Approximate solution of the fourth-order ERK method (yr

2 ), exact solution (Y r
2 ) and absolute error function (Nr

e ) under (ii)-differentiability at 
t = 1 for r ∈ [0, 1], Example 4.1.

r y2
r Y2

r Nr
e y2

r Y2
r Nr

e

0 1.082716e0 1.082682e0 3.412155e−5 1.650374e−1 0.164840e0 1.967231e−4
0.1 9.858142e−1 9.857742e−1 3.998434e−5 1.813540e−1 0.181165e0 1.888891e−4
0.2 8.975519e−1 8.975055e−1 4.632400e−5 1.992806e−1 0.199099e0 1.807677e−4
0.3 8.171626e−1 8.171096e−1 5.311482e−5 2.189756e−1 0.218803e0 1.723932e−4
0.4 7.439475e−1 7.438872e−1 6.032561e−5 2.406125e−1 0.240449e0 1.638032e−4
0.5 6.772691e−1 6.772012e−1 6.792032e−5 2.643821e−1 0.264227e0 1.550379e−4
0.6 6.165465e−1 6.164706e−1 7.585884e−5 2.904936e−1 0.290347e0 1.461398e−4
0.7 5.612501e−1 5.611660e−1 8.409766e−5 3.191766e−1 0.319039e0 1.371539e−4
0.8 5.108971e−1 5.108045e−1 9.259063e−5 3.506831e−1 0.350554e0 1.281272e−4
0.9 4.650474e−1 4.649462e−1 1.012896e−4 3.852900e−1 0.385170e0 1.191079e−4
1 4.233002e−1 4.231900e−1 1.101453e−4 4.233002e−1 0.423190e0 1.101453e−4

Fig. 1. A comparison between the fuzzy approximate solution by the fourth-order ERK method (+) and fuzzy exact solution (◦) at t = 1 for 
r ∈ [0, 1], Example 4.1.

There is also a battery with emf ε, and a switch that is initially in the “no battery” position. At first, there is no current 
in the circuit. Due to the response of the inductor to change, it opposes any change in current = in an RL circuit as 
time goes by. The potential differences across the resistor and inductor also change, but the loop rule is satisfied at all 
times [65].

However, environmental conditions, unknown effects over the circuit and vague values of elements are the main 
factors of uncertain variables in circuit analysis. In fact, the current of a circuit depends on applied voltage to the 
circuit, and impedance of the circuit. If the applied voltage is not constant, and there are differences with theoretical 
aspects then uncertainty exists between the theoretical response and practical results [66,67]. Hence, the fuzzy concept 
helps us to interpret the problem as follows:{

y′(t) = −R
L
y(t) + v(t), t ∈ [0,1],

y(0; r) = (0.96 + 0.04r,1.01 − 0.01r),
(4.31)

where r ∈ [0, 1] and R is the circuit resistance and L is a coefficient corresponding to the solenoid.

Assume that v(t) = sin(t), R = 1� and L = 1 H. Therefore (4.31) can be rewritten as:{
y′(t) = −y(t) + sin(t), t ∈ [0,1],
y(0; r) = (0.96 + 0.04r,1.01 − 0.01r),

(4.32)
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Fig. 2. An LR circuit with a battery, resistor, inductor, and switch, Example 4.2.

and the exact solution of this problem under (ii)-differentiability is:{
Y 1(t; r) = 1

2 (sin(t) − cos(t)) + e−t (1.46 + 0.04r),

Y 1(t; r) = 1
2 (sin(t) − cos(t)) + e−t (1.51 − 0.01r),

and by using (i)-differentiability, the analytical solution is given by:{
Y 1(t; r) = − 1

2 (0.05 − 0.05r)et + 1
2 (2.97 + 0.03r)e−t + 1

2 (sin(t) − cos(t)),

Y 1(t; r) = 1
2 (0.05 − 0.05r)et + 1

2 (2.97 + 0.03r)e−t + 1
2 (sin(t) − cos(t)).

It should be noted that f ′(t, y(t; r)) = [y(t; r) + cos(t) − sin(t), y(t; r) + cos(t) − sin(t)]. By applying the tech-
nique described in Section 3, Eqs. (3.17) and (3.18), for non-autonomous FODE under (i)-differentiability we have:⎧⎨⎩ k1

(1)
1 = (−y1

r
n + sin(tn)); k1

(1)
1 = (−y

1
r

n
+ sin(tn)),

k1
(2)
1 = (y

1
r

n
+ cos(tn) − sin(tn)); k1

(2)
1 = (y1

r
n + cos(tn) − sin(tn)).

(4.33)

Moreover, we can obtain⎧⎨⎩ k3
(2)
1 = (1 + h2

2 )y
1
r

n
− hy1

r
n − h2

2 sin(tn) + (h − 1) sin(tn + h) + cos(tn + h),

k3
(2)
1 = (1 + h2

2 )y1
r
n − hy

1
r

n
− h2

2 sin(tn) + (h − 1) sin(tn + h) + cos(tn + h),
(4.34)

and ⎧⎨⎩ k4
(2)
1 = y

1
r

n
+ h2

2 ((−10 − h2

2 )y1
r
n + 2hy

1
r

n
+ (7 − h + h2

2 ) sin(tn) + (2 − h) sin(tn + h
2 ) + sin(tn + h)),

k4
(2)
1 = y1

r
n + h2

2 ((−10 − h2

2 )y
1
r

n
+ 2hy1

r
n + (7 − h + h2

2 ) sin(tn) + (2 − h) sin(tn + h
2 ) + sin(tn + h)),

(4.35)

i.e. the approximate solution y1
r
n+1 is achieved immediately from formula (3.17) by using Eqs. (4.33)–(4.35).

We can reach the fuzzy approximate solution of the problem (4.32) under (ii)-differentiability in a similar manner 
to the aforementioned procedure. So, we have:⎧⎨⎩ k1

(1)
2 = (−y

2
r

n
+ sin(tn)); k1

(1)
1 = (−y

2
r

n
+ sin(tn)),

k1
(2)
2 = (y

2
r

n
+ cos(tn) − sin(tn)); k1

(2)
2 = (y2

r
n + cos(tn) − sin(tn)).

(4.36)

Moreover, we obtain:⎧⎨⎩ k3
(2)
2 = (1 − h + h2

2 )y
2
r

n
− h2

2 sin(tn) + (h − 1) sin(tn + h) + cos(tn + h),

k3
(2)
2 = (1 − h + h2

2 )y2
r
n − h2

2 sin(tn) + (h − 1) sin(tn + h) + cos(tn + h),
(4.37)

and ⎧⎨⎩ k4
(2)
2 = y

2
r

n
+ h2

2 ((−10 + 2h − h2

2 )y
2
r

n
+ (7 − h + h2

2 ) sin(tn) + (2 − h) sin(tn + h
2 ) + sin(tn + h)),

k4
(2)
2 = y2

r
n + h2

2 ((−10 + 2h − h2

2 )y2
r
n + (7 − h + h2

2 ) sin(tn) + (2 − h) sin(tn + h
2 ) + sin(tn + h)).

(4.38)

Again, using Eqs. (4.36)–(4.38), the approximate solution y2
r is easily acquired from (3.19).
n+1
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Table 3
Exact solution (Y r

1 ), absolute error function (Nr
erk

) for the fourth-order ERK method, absolute error function (Nr
rk

) for the fourth-order RK method 
under (i)-differentiability at t = 1 for r ∈ [0, 1], Example 4.2.

ERK4 RK4 ERK4 RK4

r Y1
r Nr

erk
Nr

rk
Y1

r Nr
erk

Nr
rk

0 0.628928 9.072474e−8 5.031396e−7 0.764842 1.095380e−7 3.989234e−7
0.1 0.636275 9.158906e−8 4.984287e−7 0.758598 1.085210e−7 4.046341e−7
0.2 0.643623 9.245338e−8 4.937177e−7 0.752354 1.075040e−7 4.103448e−7
0.3 0.650970 9.331769e−8 4.890068e−7 0.746110 1.064870e−7 4.160554e−7
0.4 0.658318 9.418201e−8 4.842958e−7 0.739866 1.054700e−7 4.217661e−7
0.5 0.665665 9.504632e−8 4.795849e−7 0.733622 1.044530e−7 4.274768e−7
0.6 0.673013 9.591064e−8 4.748739e−7 0.727379 1.034359e−7 4.331874e−7
0.7 0.680360 9.677496e−8 4.701630e−7 0.721135 1.024189e−7 4.388981e−7
0.8 0.687708 9.763927e−8 4.654520e−7 0.714891 1.014019e−7 4.446088e−7
0.9 0.695055 9.850359e−8 4.607411e−7 0.708647 1.003849e−7 4.503194e−7
1 0.702403 9.936790e−8 4.560301e−7 0.702403 9.936790e−8 4.560301e−7

Table 4
Exact solution (Y r

2 ), absolute error function (Nr
erk

) for the fourth-order ERK method, absolute error function (Nr
rk

) for the fourth-order RK method 
under (ii)-differentiability at t = 1 for r ∈ [0, 1], Example 4.2.

ERK4 RK4 ERK4 RK4

r Y2
r Nr

erk
Nr

rk
Y2

r Nr
erk

Nr
rk

0 0.687688 1.014039e−7 4.427005e−7 0.706082 9.885889e−8 4.593625e−7
0.1 0.689159 1.012003e−7 4.440334e−7 0.705714 9.8909800e−8 4.590293e−7
0.2 0.690631 1.009967e−7 4.453664e−7 0.705346 9.8960700e−8 4.586960e−7
0.3 0.692102 1.007931e−7 4.466994e−7 0.704978 9.901160e−8 4.583628e−7
0.4 0.693574 1.005895e−7 4.480323e−7 0.704610 9.906250e−8 4.580296e−7
0.5 0.695045 1.003859e−7 4.493653e−7 0.704242 9.911340e−8 4.576963e−7
0.6 0.696517 1.001823e−7 4.506983e−7 0.703875 9.916430e−8 4.573631e−7
0.7 0.697988 9.997871e−8 4.520312e−7 0.703507 9.921520e−8 4.570298e−7
0.8 0.699460 9.977511e−8 4.533642e−7 0.703139 9.926610e−8 4.566966e−7
0.9 0.700931 9.957151e−8 4.546972e−7 0.702771 9.931700e−8 4.563634e−7
1 0.702403 9.936790e−8 4.560301e−7 0.702403 9.936790e−8 4.560301e−7

Fig. 3. A comparison between the fuzzy approximate solution by the fourth-order ERK method (◦), the fourth-order RK method (+) and fuzzy 
exact solution (.−) at t = 1 for r ∈ [0, 1], Example 4.2.
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A comparison between the absolute error functions acquired by our method and the fourth-order RK method de-
scribed in [1], at x = 1 under both types of fuzzy differentiability, is shown in Tables 3 and 4. The results demonstrate 
that the fourth-order ERK method can solve the problem effectively and achieve higher accuracy in comparison with 
the fourth-order classical RK method. The approximate solutions obtained by the present method at x = 1 are plotted 
in Fig. 3 under (i) and (ii)-differentiability to make it easier to compare the fuzzy approximate solution of the fourth-
order ERK method with the analytic solution and the fourth-order RK method solution. The proposed techniques could 
achieve the same order of accuracy with a lower number of function evaluations and thus reduces the computational 
cost in comparison with the fourth-order RK method. From the results, it can be implied that the fuzzy approximate 
and analytical solutions under (ii)-differentiability are in this case closer to the real solution of the problem compared 
with the H-differentiability.

Example 4.3. To complete the illustration of our proposed method, the following example is presented. The problem 
has a switching point on the defined interval. The mixed solutions to the problem are derived according to the type of 
fuzzy differentiability, which is defined on the neighborhood V of the switching point.

We are concerned with the following FIVP:{
y′(t) = (1 − t)y(t), 0 ≤ t ≤ 2,

y(0) = (0,1,2),
(4.39)

where the initial value condition is a triangular symmetric fuzzy number with the parametric form [r, 2 − r].

It is obvious that the initial value problem (4.39) on [0, 1] is (i)-differentiable, and at t = 1 the problem switches 
to (ii)-differentiability. So, the point t = 1 is a switching point and the obtained solution on [0, 1] is (i)-differentiable 
and (ii)-differentiable on [1, 2].

Hence, the mixed solution of the problem (4.39) can be obtained by solving⎧⎪⎪⎪⎨⎪⎪⎪⎩
y′(t; r) = (1 − t)y(t; r),
y′(t; r) = (1 − t)y(t; r),
y(0; r) = r,

y(0; r) = 2 − r,

(4.40)

for t ∈ [0, 1] under (i)-differentiability and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y′(t; r) = (1 − t)y(t; r),
y′(t; r) = (1 − t)y(t; r),
y(1; r) = re

1
2 ,

y(1; r) = (2 − r)e
1
2 ,

(4.41)

for t ∈ [1, 2] under (ii)-differentiability.
It is worth mentioning here that f ′(t, y(t; r)) = [ty(t; r)(t − 2), ty(t; r)(t − 2)] (see in [10]). Now we use the 

fourth-order ERK method to obtain the approximate solution of the FIVPs (4.40) and (4.41). Define y1n to be the 
approximate value of x(tn) under (i)-differentiability for tn ∈ [0, 1] and y2n under (ii)-differentiability for tn ∈ [1, 2]. 
Then, the fourth-order ERK method is constructed as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k1
(1)
1 = (1 − tn)y1n

; k1
(1)
1 = (1 − tn)y1n,

k2
(1)
1 = y

1n
(1 − (tn + h

2 ))(1 + h
2 (1 − tn)); k2

(1)
1 = y1n(1 − (tn + h

2 ))(1 + h
2 (1 − tn)),

k3
(1)
1 = y

1n
(1 − (tn + h))(1 + h(1 − (tn + h

2 ))(1 + h
2 (1 − tn)))

k3
(1)
1 = y1n(1 − (tn + h))(1 + h(1 − (tn + h

2 ))(1 + h
2 (1 − tn)))

(4.42)

and {
k1

(2)
1 = tny1

r

n
(tn − 2),

k
(2) = t y r (t − 2).

(4.43)

11 n 1n n
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In addition, we have:{
k3

(2)
1 = y

1
r

n
(tn + h)(tn + h − 2){1 + h(1 − tn − h

2 )(1 + h
2 (1 − tn))},

k3
(2)
1 = y1

r
n(tn + h)(tn + h − 2){1 + h(1 − tn − h

2 )(1 + h
2 (1 − tn))},

(4.44)

and {
k4

(2)
1 = y

1
r
n
(tn + 2h

5 )(tn + 2h
5 − 2)(1 + h

25 {7(1 − tn) + (1 − (tn + h)) + (2 + h)(1 − (tn + h
2 ))(1 + h

2 (1 − tn))}),
k4

(2)
1 = y1

r
n(tn + 2h

5 )(tn + 2h
5 − 2)(1 + h

25 {7(1 − tn) + (1 − (tn + h)) + (2 + h)(1 − (tn + h
2 ))(1 + h

2 (1 − tn))}),
(4.45)

where tn ∈ [0, 1]. To approximate the (ii)-differentiable solution, y(tn) for tn ∈ [1, 2], the fourth-order ERK method is 
employed by the similar previous process as:⎧⎨⎩ y2n+1

(r) = y2n
(r) + hk1

(1)
1 + h2

8 k1
(2)
2 + h2

36k3
(2)
2 + 25h2

72 k4
(2)
2 ,

y2n+1(r) = y2n(r) + hk1
(1)
1 + h2

8 k1
(2)
2 + h2

36k3
(2)
2 + 25h2

72 k4
(2)
2 ,

(4.46)

where k1
(1)
1 , ..., k4

(2)
2 are achieved using Eq. (3.20) as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k1
(1)
2 = (1 − tn)y2n

; k1
(1)
2 = (1 − tn)y2n,

k2
(1)
2 = y

2n
(1 − (tn + h

2 ))(1 + h
2 (1 − tn)); k2

(1)
2 = y2n(1 − (tn + h

2 ))(1 + h
2 (1 − tn)),

k3
(1)
2 = y

2n
(1 − (tn + h))(1 + h(1 − (tn + h

2 ))(1 + h
2 (1 − tn)))

k3
(1)
1 = y2n(1 − (tn + h))(1 + h(1 − (tn + h

2 ))(1 + h
2 (1 − tn)))

(4.47)

and {
k1

(2)
2 = tny2

r

n
(tn − 2),

k1
(2)
2 = tny2

r
n(tn − 2).

(4.48)

Furthermore, we obtain{
k3

(2)
2 = y

2
r

n
(tn + h)(tn + h − 2){1 + h(1 − tn − h

2 )(1 + h
2 (1 − tn))},

k3
(2)
2 = y2

r
n(tn + h)(tn + h − 2){1 + h(1 − tn − h

2 )(1 + h
2 (1 − tn))},

(4.49)

and {
k4

(2)
2 = y

2
r
n
(tn + 2h

5 )(tn + 2h
5 − 2)(1 + h

25 {7(1 − tn) + (1 − (tn + h)) + (2 + h)(1 − (tn + h
2 ))(1 + h

2 (1 − tn))}),
k4

(2)
2 = y2

r
n(tn + 2h

5 )(tn + 2h
5 − 2)(1 + h

25 {7(1 − tn) + (1 − (tn + h)) + (2 + h)(1 − (tn + h
2 ))(1 + h

2 (1 − tn))}).
(4.50)

The exact solution and approximate solutions obtained by using the fourth-order ERK method and the fourth-order 
RK method are plotted in Fig. 4. In addition, the results are shown in Tables 5 and 6 under (i) and (ii)-differentiability, 
respectively. In Fig. 5, we display the r-level sets of the exact solution of the problem (4.39) for r ∈ [0, 1].

5. Conclusion

In this paper, a two-step RK formula of order four with a reduced number of function evaluations is discussed. 
A clear advantage of this technique lies in the fact that an explicit RK method of order four requires four function 
evaluations, whereas our proposed RK method needs only three function evaluations of f and f ′ per step for au-
tonomous systems. This leads to an enhancement of the order of the accuracy of the solutions and a reduction in the 
computational cost, especially for FODEs that needs to solve two ODEs systems simultaneously in order to achieve 
the fuzzy approximate solution.

On the other hand, we have developed an adaptive version of the fourth-order ERK method for non-autonomous 
FODEs systems. We have presented a number of examples that solve this type of FODEs system. Practically, we 
have derived suitable error estimate of the local error, and provided fuzzy differentiability-choosing strategies for this 
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Table 5
Exact solution (Y r

1 ), absolute error function (Nr
erk

) for the fourth-order ERK method, absolute error function (Nr
rk

) for the fourth-order RK method 
under (i)-differentiability at t = 1 for r ∈ [0, 1], Example 4.3.

ERK4 RK4 ERK4 RK4

r Y1
r Nr

erk
Nr

rk
Y1

r Nr
erk

Nr
rk

0 0 0 0 3.297442 7.867828e−7 5.272934e−7
0.1 0.164872 3.933914e−8 2.636467e−8 3.132570 7.474436e−7 5.009287e−7
0.2 0.329744 7.867828e−8 5.272934e−8 2.967698 7.081045e−7 4.745641e−7
0.3 0.494616 1.180174e−7 7.909401e−8 2.802826 6.687653e−7 4.481994e−7
0.4 0.659488 1.573565e−7 1.054586e−7 2.637954 6.294262e−7 4.218347e−7
0.5 0.824360 1.966957e−7 1.318233e−7 2.473081 5.900871e−7 3.954700e−7
0.6 0.989232 2.360348e−7 1.581880e−7 2.308209 5.507479e−7 3.691054e−7
0.7 1.154104 2.753739e−7 1.845527e−7 2.143337 5.114088e−7 3.427407e−7
0.8 1.318977 3.147131e−7 2.109173e−7 1.978465 4.720696e−7 3.163760e−7
0.9 1.483849 3.540522e−7 2.372820e−7 1.813593 4.327305e−7 2.900114e−7
1 1.648721 3.933914e−7 2.636467e−7 1.648721 3.933914e−7 2.636467e−7

Table 6
Exact solution (Y r

2 ), absolute error function (Nr
erk

) for the fourth-order ERK method, absolute error function (Nr
rk

) for the fourth-order RK method 
under (ii)-differentiability at t = 1 for r ∈ [0, 1], Example 4.3.

ERK4 RK4 ERK4 RK4

r Y2
r Nr

e Nr
e Y2

r Nr
e Nr

e

0 0 0 0 2.000000 5.557013e−7 2.198941e−7
0.1 0.100000 2.778506e−8 1.099470e−8 1.900000 5.279162e−7 2.088994e−7
0.2 0.200000 5.557013e−8 2.198941e−8 1.800000 5.001311e−7 1.979047e−7
0.3 0.300000 8.335519e−8 3.298412e−8 1.700000 4.723461e−7 1.869100e−7
0.4 0.400000 1.111402e−7 4.397883e−8 1.600000 4.445610e−7 1.759153e−7
0.5 0.500000 1.389253e−7 5.497353e−8 1.500000 4.167759e−7 1.649206e−7
0.6 0.600000 1.667103e−7 6.596824e−8 1.400000 3.889909e−7 1.539259e−7
0.7 0.700000 1.944954e−7 7.696295e−8 1.300000 3.612058e−7 1.429312e−7
0.8 0.800000 2.222805e−7 8.795766e−8 1.200000 3.334207e−7 1.319364e−7
0.9 0.900000 2.500655e−7 9.895236e−8 1.100000 3.056357e−7 1.209417e−7
1 1.000000 2.778506e−7 1.099470e−7 1.000000 2.778506e−7 1.099470e−7

Fig. 4. A comparison between the fuzzy approximate solution by the fourth-order ERK method (◦), the fourth-order RK method (+) and fuzzy 
exact solution (�) at t = 1 for r ∈ [0, 1], Example 4.3.
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Fig. 5. Exact solution to the problem (4.39) that is (i)-differentiable on t ∈ [0, 1), (◦-red line), and (ii)-differentiable on t ∈ (1, 2], (�-green line). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

type of FODEs system. In fact, the procedure consists of using a fourth-order ERK method with local truncation 
error of order four with respect to the type of fuzzy differentiability. Furthermore, according to Bede et al. [17] “The 
importance of converting a FDE to a system of ODEs is that then any suitable numerical method for ODEs may be 
implemented”. In this research, we have solved FDEs under generalized H-differentiability by applying the fourth 
order ERK method, and provided the convergence theorem as well. We have also studied the numerical solutions of 
the FODE system with a switching point, where the piecewise solution changes from (i)- to (ii)-differentiability. We 
have presented an example to illustrate how this type of FDE can be solved by using the proposed method.

To summarize, we briefly state the following objectives which have been achieved:
(I) The given non-autonomous or autonomous FODE has been solved using the fourth-order ERK method, with 

lower computational cost, especially for cases where f ′ is not more expensive to evaluate than f , in comparison with 
the fourth-order classical RK method.

(II) The method has been derived under both types of fuzzy derivatives, and all the examples have been tested 
under (i) and (ii)-differentiability. However, the outcomes illustrate that the case of (i)-differentiability does not have 
adequate efficiency for the numerical solutions of FODEs.

Future research will attempt to apply the RK Nystrom method for solving second order FODEs under general-
ized H-differentiability. In addition, the numerical methods for solving fuzzy fractional differential equations will be 
studied.
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