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The study of fuzzy relations forms an important fundamental of fuzzy reasoning. Among all, the research
on compositional fuzzy relations by Bandler and Kohout, or the Bandler–Kohout (BK) subproduct gained
remarkable success in developing inference engines for numerous applications. Despite of its successful-
ness, we notice that there are limitations associated in the current implementations of the BK subprod-
uct. In this paper, the BK subproduct, which originally based on the ordinary fuzzy set theory, is extended
to the interval-valued fuzzy sets. This is because studies had claimed that ordinary fuzzy set theory has
its limitation in addressing uncertainties using the crisp membership functions. Secondly, with the
understanding that some features might have higher influence compare to the others, a weight parameter
is introduced in the BK subproduct-based inference engines. Finally, a fuzzification method that able to
fuzzify the input data and also train the inference engines is also developed. So, the BK subproduct-based
inference systems can be built without human intervention, which are cumbersome and time consuming.
Experiments on three public datasets and a comparison with state-of-art solutions have shown the effi-
ciency and robustness of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Reasoning with fuzzy sets theory has been widely studied in the
literature. Some common directions of studies include finding soft
cluster centers of data (Roh, Pedrycz, & Ahn, 2014; Son, 2015), inte-
grate the fuzzy sets theory with other technologies such as artifi-
cial neural networks (Egrioglu, Aladag, & Yolcu, 2013; Suparta &
Alhasa, 2014) or particle swarm optimization (Melin et al., 2013),
modeling parameters as fuzzy numbers (Petrović et al., 2014;
Samantra, Datta, & Mahapatra, 2014) and etc (Abdullah & Najib,
2014; Nguyen, Dawal, Nukman, & Aoyama, 2014). Among all, many
researches focus on constructing fuzzy inference systems for vari-
ous purposes, such as classification (Ait Laasri, Akhouayri, Agliz,
Zonta, & Atmani, 2015; D’Andrea & Lazzerini, 2013; Samuel,
Omisore, & Ojokoh, 2013; Yuste, Triviño, & Casilari, 2013), control
(Bugarski, Bačkalić, & Kuzmanov, 2013; Liu, Han, & Lu, 2013; Liu,
Yang, & Yang, 2013) and etc (Camastra et al., 2015; Gupta, Saini,
& Saxena, 2014). In all these fuzzy inference systems, fuzzy rules
are the core of the inference processes.

However, the popularity of these rule based fuzzy inference sys-
tems dispute the necessity of developing other inference schemes.
Among all, a theory on compositions of fuzzy relations, namely the
Bandler-Kohout (BK) subproduct (Kohout & Bandler, 1980a, 1980b)
shows its excellency in some studies (Bodenhofer, Dankova,
Stepnicka, & Novak, 2007; Stepnicka & Jayaram, 2010). Compare
to those popular rule based fuzzy inference systems, a special char-
acteristic of BK subproduct based inference systems is it does not
require rules. Certainly, it is an advantage in the cases which rules
are hardly define (Kolodner, 1992). While some theoretical
researches on BK subproduct are in advancement (Mandal &
Jayaram, 2013; Stepnicka & De Baets, 2013; Štěpnička &
Holčapek, 2014), empirical works have also been carried out to
prove its advantages in many expert systems, such as medical
diagnostic systems (Kohout, Stabile, Kalantar, & San-Andres,
1995; Yew & Kohout, 1997), information retrieval (Kohout &
Bandler, 1985), land evaluation (Groenemans, Ranst, & Kerre,
1997), cognitive sciences (Kohout, 2009), scene understanding
(Vats, Lim, & Chan, 2012) and etc.

Despite of its successfulness, we notice that there are still some
limitations associated in the current implementations of the BK
subproduct. First of all, the implementations of the BK subproduct
in the literature are still based on the classical Type-1 Fuzzy Set
(T1FS) theory, which address uncertainties with point-values.
Studies such as Mendel (2000, 2003) claimed that T1FS has its lim-
itation in addressing uncertainties with its crisp membership func-
tions. Secondly, the BK subproduct performs inferences utilize a set
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Table 1
Example of the fuzzy implication operators and their respective definitions.

Name Symbol Definition

S# – Standard Sharp r!S# s 1 iff r – 1 or s ¼ 1
0 otherwise

�
(Mizumoto & Zimmermann, 1982)
S – Standard Strict r!S s 1 iff r 6 1

0 otherwise

�
(Mizumoto & Zimmermann, 1982)
G43 – Gaines 43 r!G43 s minð1; r

sÞ
(Mizumoto & Zimmermann, 1982)
KD – Kleene-Dienes r!KD s maxðs;1� rÞ
(Kohout & Bandler, 1980a)
R – Reichenbach r!R s 1� r þ rs
(Kohout & Bandler, 1980a)
L – Łukasiewicz r!Ł s minð1;1� r þ sÞ
(Zadeh, 1975)
Y – Yager (Yager, 1980) r!Y s s r

EZ – Early Zadeh r!EZ s ðr ^ sÞ _ ð1� rÞ
(Zadeh, 1975)
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of common features that relate the inputs and outputs. In most
cases, the BK subproduct treats all the features equally, i.e. the
importance of all the features are similar. However, in practical,
not all these features have the identical influences towards the
inference outcomes. We argue that some features may have higher
reliability or distinguishability than the others, and vice versa. In
the literature of fuzzy logic, implementation of the weight param-
eter is not rare (Ishibuchi & Yamamoto, 2005; Seki & Mizumoto,
2011; Xing & Ha, 2014). For example, Groenemans et al. (1997)
have tried to incorporate the weight parameter in the BK subprod-
uct. However, this implementation would require to fulfill a condi-
tion:

PN
n¼1wn ¼ 1 where n ¼ f1;2; . . . ;Ng;N is the number of

features and wn is the weight of feature n. This condition is too
restrictive for a good implementation of weight because: (i) adding
or decreasing features into consideration list will cause recalcula-
tion of all the weights. For instance, adding a new feature with
weight wNþ1 – 0 to the existing feature list will cause the total
weight become

PNþ1
n¼1 wn > 1 and the condition of total weight

equal to 1 is not longer hold. Thus, a normalization is required so
that the

PNþ1
n¼1 wn ¼ 1 is satisfied. (ii) importance or influence of a

feature is not intuitive – i.e. comparing a system with such condi-
tion to an implementation of weight where wn 2 ½0;1� for all n, the
weights of the latter are much intuitive as the weights close to 0
means less influence, while close to 1 means high influence.
Groenemans et al. (1997) found out that the weights can be small
numbers that close to 0 even if they have high influence in the case
of number of features N is large. Furthermore, this problem become
much more complicated if new features that are going to be added
into consideration, as one may not know what are the appropriate
values that representing the high (or low) influence.

Last but not least, in all the previous attempts of the BK
subproduct, predefine rules (Bui & Kim, 2006) or experts
knowledge (Kohout et al., 1995) are priori required, so that the
knowledge base can be formed. In some cases, worst still the fuzz-
ification of the input data are done manually, which is cumber-
some and time consuming. An approach to train the BK
subproduct automatically so that it can learn from the training
examples could not be found in the literature, and the lack of this
learning mechanism greatly limits the application of the BK sub-
product in many fields.

Hence, the aims of this paper is to form a more reliable BK
subproduct reasoning framework. For this purpose, our contribu-
tions are threefolds: (1) we extend the current BK subproduct to
the Interval-Valued Fuzzy Sets (IVFS) by defining a subsethood
measure of IVFS. (2) a weight parameter is incorporated to the
BK subproduct-based inference engines so that more attention is
given to those important features, and (3) we introduce a learning
mechanism for the BK subproduct. Employing the training sam-
ples, the proposed learning mechanism manages to form the
knowledge base of a BK subproduct-based inference engine with-
out human intervention. Additionally, the learning mechanism also
produce membership functions that serve to fuzzify the input data.
To prove the advantages and improvements of the proposed BK
subproduct, three publicly available medical data sets are
employed. Experimental results and a comparison with state-of-
the-art solutions have shown the efficiency of the proposed
method.

The rest of the paper are arranged as follow: In Section 2, we
provide a short revision on the BK subproduct. Section 3 discusses
the extension of BK subproduct from T1FS to IVFS, along with a
subsethood measure of IVFS. In Section 4, we introduce the weight
parameter to this newly developed IVFS reasoning scheme. Sec-
tion 5 proposes a learning mechanism so that the BK subproduct
based inference systems can be built from numerical data. The
classification experiment and the discussion is presented in
Section 6. Lastly, we conclude the paper in Section 7.
2. BK subproduct revisit

We start this section with a brief review on the definition of the
BK subproduct on crisp relations. Assume that A;B and C are three
crisp sets and a; b and c are general representation to the elements
in these sets respectively. R is defined as a relation from A to B such
that R # A� B; whereas S is a relation from B to C such that
S # B� C. The converse relation of S is denoted as ST . The abbrevi-
ation aRb shows that a is in relation R with b. Kohout and Bandler
(1980a) defined the BK subproduct as follow:

Definition 1. The BK subproduct is a composition of relations for a
and c such that:

R / S ¼ fða; cÞjða; cÞ 2 A� C and aR # Scg ð1Þ

where aR ¼ fbjaRbg is the image of a after the projection of relation
R in the set B, while Sc ¼ fbjbScg is the image of c after the projec-
tion of relation ST in the set B. The BK subproduct is useful in
retrieving relationships between elements of two indirectly associ-
ated sets, objects A and targets C, if both sets can be associated with a
set of common features, B.

It is trivial that Definition 1 is established on the subsethood of
aR in Sc. In order to extend it to the fuzzy relations, the fuzzy sub-
sethood measure for T1FS is defined as:

Definition 2. For two T1FS, P and Q in the same universe X, the
possibility of P is a subset of Q is given as follow:

pðP # QÞ ¼
^
x2X

ðPðxÞ ! QðxÞÞ ð2Þ

where PðxÞ and QðxÞ are the membership degrees of x in set P and Q
respectively,! is the fuzzy implication operators (see Table 1) gen-
erally defined as ‘‘NOT A OR B’’ and ^ is the infimum operator which
can be considered as min function in harsh criterion or arithmetic
mean in mean criterion (Kohout & Bandler, 1980a).
Definition 3. Employing the Eqs. (1) and (2), Kohout and Bandler
(1980a) defined the fuzzy BK subproduct as follow:

R / Sða; cÞ ¼
^
b2B

Rða; bÞ ! Sðb; cÞð Þ ð3Þ

where Rða; bÞ is the fuzzy membership degree to which aRb is true
and Sðb; cÞ is the fuzzy membership degree to which bSc is true.



Fig. 2. Implication of a single membership degree in ~PðxiÞ to all the discretized
membership degrees of ~QðxiÞ.
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3. Interval-valued fuzzy sets-based BK subproduct

The conventional BK subproduct are based on the fuzzy subset-
hood measure that relies on fuzzy implication operators. Therefore
it is not suitable for proposed IVFS-based BK subproduct as all the
fuzzy implication operators are only defined for point-value mem-
bership degrees, and the membership degrees for IVFS are inter-
vals. To tackle this problem, in this paper, we proposed an IVFS
subsethood measurement method based on the implication opera-
tors, namely the Complete Derivation Method.

Let ~P and ~Q be the two IVFS in the universe X as shown in Fig. 1. If
I is the number of elements in the universe, for an element
xi; i ¼ f1; . . . ; Ig, the interval-valued membership degrees for xi in
~P and ~Q are ½PðxiÞ; PðxiÞ� and ½QðxiÞ;QðxiÞ� respectively. Assume that
both axes of element and membership degrees are discrete, or can
be discretized, Representation Theorem (Mendel & John, 2002) sug-
gests that, if the total number of T1FS for ~P is g~P , then the number of
T1FS that passing through a discrete point PðxiÞj is given by g~P

Ji
, where

Ji is the total number of discrete membership degrees in ½PðxiÞ; PðxiÞ�
and j ¼ f1; . . . ; Jig. For ~Q , if Ki is the number of discrete membership
degree in ½QðxiÞ;QðxiÞ� and k ¼ f1;2; . . . ;Kig, the number of T1FS

that passing through a discrete point QðxiÞk is given by
g~Q
Ki

.

To formulate the fuzzy subsethood measure of IVFS, we start
with evaluating an arbitrary pair of point membership degrees

PðxiÞj and QðxiÞk in ~P and ~Q respectively, on a same element xi. If
these are the only points on xi, following Eq. (2), the subsethood
measure on this element can be written as pð~P # ~QÞðxiÞ ¼
PðxiÞj ! QðxiÞk. However, since there are g~P

Ji
of T1FS on PðxiÞj and

g~Q
Ki

on QðxiÞk, this implication involves a number of g~P
Ji
� g~Q

Ki
pairs of

T1FS, thus it should be represented as:

g~Pg~Q

JiKi
PðxiÞj ! QðxiÞk
� �

ð4Þ

If PðxiÞj is the only discrete point for ~PðxiÞ, then the subsethood mea-
sure can be evaluate by summing up all the implications of this
point membership degree to all the QðxiÞk as illustrated in Fig. 2):

g~Pg~Q

JiKi

XKi

k¼1

PðxiÞj ! QðxiÞk
� �

ð5Þ

In general cases, ½PðxiÞ; PðxiÞ� are intervals with more than one dis-
crete points. Therefore, if we generalized Eq. (5) to all the PðxiÞj in
the element xi and normalized it with the total number of T1FS
g~Pg~Q , we have the fuzzy subsethood measure for this element as:

pð~P # ~QÞðxiÞ ¼
1

JiKi

XJi

j¼1

XKi

k¼1

PðxiÞj ! QðxiÞk
� �

ð6Þ
Fig. 1. Two IVFS ~P and ~Q in the same universe X.
Substitute Eq. (6) to Eq. (3), the IVFS subsethood measure extended
from the original BK subproduct is:

pð~P # ~QÞ ¼
^
i2I

1
JiKi

XJi

j¼1

XKi

k¼1

PðxiÞj ! QðxiÞk
� �

ð7Þ

With a fuzzy implication operator, Eq. (7) will result a subsethood
measurement of ~P # ~Q in the interval ½0;1�. However, one must note
that the subsethood measurements for crisp sets are Boolean (yes/
no) and for the T1FS are point-values. Therefore, it is reasonable to
deduce that the subsethood measurements for the IVFS should be
in intervals instead of point-values Nguyen and Kreinovich (2008),
Yang and Lin (2009), Zheng, Xiao, Zhang, and Shi (2010) and
Rickard, Aisbett, and Greb (2009). Studies from Kohout and Bandler
(1980b, 1992) and Lim and Chan (2011, 2012) suggested that the Kle-
ene-Dienes and Łukasiewicz implication operators are amongst the
two most suitable candidates for lower and upper bounds of fuzzy
subsethood measurements. With the knowledge that:

p!KDq 6 p!Ł q 8p; q 2 ½0;1� ð8Þ

Thus, the subsethood measure using the Complete Derivation
Method is given by:

pð~P # ~QÞ ¼
^
i2I

1
JiKi

XJi

j¼1

XKi

k¼1

PðxiÞj!KDQðxiÞk
� �

;

"
^
i2I

1
JiKi

XJi

j¼1

XKi

k¼1

PðxiÞj!ŁQðxiÞk
� �#

ð9Þ

Assume that the ~PðxÞ is the image of a~R and ~sc gives ~QðxÞ, the pro-
posed IVFS-based BK subproduct can be defined as follow:

~R / ~sða; cÞ ¼ 1
I

XI

i¼1

1
JiKi

XJi

j¼1

XKi

k¼1

max Sðbik; cÞ;1� Rða; bijÞ
� �

;

"
1
I

XI

i¼1

1
JiKi

XJi

j¼1

XKi

k¼1

min 1;1� Rða; bijÞ þ Sðbik; cÞ
� �#

ð10Þ
4. Weighted IVFS-based BK subproduct

4.1. Weight and BK subproduct

Generally, we cluster criteria into a few criteria sets during the
reasoning process. Among these criteria sets, some of them might



Fig. 3. Breaking up set B into multiple feature sets to form weighted BK subproduct.
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have higher influence over the others in a decision making process.
Hence, weights are very useful parameter to represent the influ-
ence of the criteria sets. However, one should note that the weight
should not be confused with the strength of criteria in the criteria
set. Similar case is applied to the BK subproduct-based inference
engines where instead of criteria, features are being employed.
Membership degrees of the object-feature relations (~R) and fea-
ture-target relations (~s) are the ‘‘strength of criteria’’ that deter-
mine the inference outcome; while features from the feature
sets, the influence of each of the feature sets are represented as
weight. That is, weight is applied to each feature set and is mod-
eled in the IVFS.

As mentioned earlier, the subsethood measure is the fundamen-
tal of fuzzy BK subproduct. Thus, one might argue that it is inap-
propriate to implement weight in the BK subproduct based
inference engines because there is no well defined weighted sub-
sethood measure in the literature. In fact, the weights are applied
to the feature sets rather than the subsethood measurements.
We explain this argument with a multiple feature sets model
accordingly.

Assume that the features in set B can be clustered into multiple
feature sets Bm;m ¼ f1;2; . . . ;Mg and each of the feature set has a
number of features. The relation between A and Bm is ~Rm, whereas
~sm is the relation between Bm and C. In this case, the images of a~Rm

and ~smc are ~Pm and ~Qm, respectively. Studying the subsethood mea-
sure of ~Pm # ~Qm, one can get the BK subproduct ~Rm / ~smða; cÞ (Fig. 3)
and each of the feature set carries different weights. Assume that
the weight of ~Rm / ~smða; cÞ is fW m, the normalized aggregation of
all the composition of relations is given as:
Fig. 4. Notations used in finding weighted
~R / ~sða; cÞ ¼
PM

m¼1
fW m

~Rm / ~smða; cÞ
� �

PM
m¼1

fW m

ð11Þ

Eq. (11) gives the weighted measure of the IVFS-based BK subprod-
uct. Here, since all ~Rm / ~smða; cÞ are intervals that only exist as
numerators, whereas fW m are IVFS, the computations results based
on Eq. (11) are always IVFS. We show the details of solving Eq. (11)
in the following subsection.
4.2. Solving the weighted average

Solving Eq. (11) is easy if all the parameters are crisp numbers.
However, in this paper, these parameters are fuzzy, and so the
solution become slightly complicated, especially with a term
1=
PM

m¼1
fW m. One of the closest solution is the Fuzzy Weighted

Average (FWA) (Dong & Wong, 1987). The FWA solved the prob-
lems in the form of:

f ¼
XM

m¼1
xmvm

� �.XM

m¼1
xm ð12Þ

where all vm and xm are T1FS. Wu and Mendel (2007) extended the
FWA to form Linguistic Weighted Average (LWA), where all vm and
xm are IVFS. Both the FWA and LWA use a-cut decomposition the-
orem (Klir & Yuan, 1995). Using the a-cut decomposition theorem,
instead of performing computations directly on the sets (vm and
xm) as whole, a number of ðd� 1Þ a-cuts are taken to break the sets
into d intervals. For each interval I i;1 6 i 6 d, perform computation
on the obtained intervals after the a-cut, i.e. vi

m and xi
m to yield an

interval Ii. The composition of all the Ii with corresponding a-cuts
form the corresponding set I.

In this paper, we engaged the solution of LWA proposed by Wu
and Mendel (2007, 2008) with assumption that the intervals
~Rm / ~smða; cÞ in Eq. (11) are special cases of the IVFS, that are these
fuzzy sets have rectangle membership functions and the Upper
Membership Functions (UMF) and Lower Membership Functions
(LMF) of ~Rm / ~smða; cÞ are equal. From here onwards, we denote
~Rm / ~smða; cÞ as Zm and the lower and upper bounds of Zm are
denoted as Zm and Zm respectively. Thus, following this notation
scheme, ~R / ~sða; cÞ is denoted as eZ .

Since the Footprint of Uncertainty (FOU) of eZ is determined by
UMF(eZ) and LMF(eZ), we can find eZ by calculating these two bound-
aries only. Wu and Mendel (2008) proved that the height of the
output sets from LWA are equal to the minimum height of all Zm

and Wm. Herein, since all UMF(fW m) are normal and Zm are inter-
vals, the height of an UMF(eZ) is unity. On the other hand, the
height of a LMF(eZ) is totally depends on LMF(fW m). Assume that
all the fW m have trapezoidal (or triangular) shape FOU, the shape
of eZ should be trapezoidal (or triangular) as well (Fig. 4).
results of IVFS-based BK subproduct.
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As described earlier, the solution of Eq. (11) starts with taking
ðd� 1Þ a-cuts to yield d intervals for each set. Thus, the rest of
the work is simplified to find the intervals that represent the
FOU of eZ corresponding to each a-cut. For this purpose, notations
that described in Fig. 4 are used:

(i) fW m : for an a-cut ai;wim1 and wim4 should be the leftmost
and rightmost values of UMF(fW m) respectively at ai. How-
ever, the variable i is intentionally left out as an subscript
of all variables here because it is independent from the cal-
culation of each iteration, and to make the equations look
more concise. Therefore, these variables become wm1 and
wm4. Similarly, wm2 and wm3 are the leftmost and rightmost
values of LMF(fW m) respectively.

(ii) Zm : Zm is the lower bound of interval Zm, whereas Zm is the
upper bound of this interval.

(iii) eZ : for an a-cut ai; z1 and z4 are the leftmost and rightmost
values of UMF(eZ) respectively. Similarly, z2 and z3 are the
leftmost and rightmost values of LMF(eZ) respectively.

Refer to the results of LWA (Wu & Mendel, 2007, 2008), for each
a-cut, the corresponding boundaries of UMF(eZ) and LMF(eZ) can be
obtained by sorting Zm and Zm in ascending order, then substituting
the corresponding values into the following equations:

z1 ¼
Pb1

m¼1wm4Zm þ
PM

m¼b1þ1wm1ZmPb1
m¼1wm4 þ

PM
m¼b1þ1wm1

ð13Þ

z2 ¼
Pb2

m¼1wm3Zm þ
PM

m¼b2þ1wm2ZmPb2
m¼1wm3 þ

PM
m¼b2þ1wm2

ð14Þ

z3 ¼
Pb3

m¼1wm2Zm þ
PM

m¼b3þ1wm3ZmPb3
m¼1wm2 þ

PM
m¼b3þ1wm3

ð15Þ

z4 ¼
Pb4

m¼1wm1Zm þ
PM

m¼b4þ1wm4ZmPb4
m¼1wm1 þ

PM
m¼b4þ1wm4

ð16Þ

In these equations, b1;b2; b3 and b4 are the switching points in the
range ½1;M� calculated using the Karnik–Mendel algorithm (Liu &
Mendel, 2008; Mendel, 2009) such that:

Zb1 6 z1 6 Zb1þ1 ð17Þ
Zb2 6 z2 6 Zb2þ1 ð18Þ
Zb3 6 z3 6 Zb3þ1 ð19Þ
Zb4 6 z4 6 Zb4þ1 ð20Þ
Fig. 5. Define a number of Hj membership functions in the interval LI
j .

Fig. 6. The 8 points definition of a membership function of an IVFS and the mapping
of membership degrees.
5. Learning mechanism for IVFS-based BK-subproduct

A typical fuzzy rule based system (Fazel Zarandi, Rezaee,
Turksen, & Neshat, 2009; Lam & Seneviratne, 2008; Lee, 1990a)
has rules in the form:

if X1 is U1 and X2 is U2 then Y is V

Here, X1 and X2 are antecedents limited by linguistic terms U1 and
U2 respectively, whereas Y is the consequent that related to another
linguistic terms V. U1 and U2 can be in different universe, as well as
the V.

In contrast, for the BK subproduct based inference engines,
there is no rules exist and inferences are only based on the rela-
tions of ~Rða; bÞ and ~sðb; cÞ, which both come from the same domain
for a feature b. Therefore, finding the values of ~Rða; bÞ and ~sðb; cÞ are
interrelated and are in accordance with the domain of b. Moreover,
the construction of membership is independence for each feature
b. Since ~Rða; bÞ are mappings from a to b and ~sðb; cÞ are reverse
mapping from c to b, the domain of b should be studied. Assume
that the number of features in set B is J 2 N and j ¼ f1; . . . ; Jg. Each
ai 2 A, where i 2 f1; . . . ; Ig; I 2 N, can be mapped to a feature bj

with a value Lji. With all the Lji, the domain of the feature bj can
be defined as an interval LIj :

LIj ¼ fLj1; . . . ; LjIg ¼ ½Lj; Lj� ð21Þ

Divide this domain into multiple sections, where the number of sec-
tion is depends on the number of linguistic terms one want to
define for the feature. These numbers can be different for different
features. For each section, form a interval-valued membership func-
tion. There is no rules on the shape of the membership functions,
but for the sake of simplicity, the membership functions with trap-
ezoidal UMF and triangular LMF are used in the following. Assume
that all the UMF are normal and the heights of LMF are m.

Let Hj 2 N be the number of membership functions defined in
the domain of feature bj, and h ¼ f1; . . . ;Hjg. A membership func-
tion defined in this domain can be named as ~Fjhj

. Fig. 5 shows an
example where domain of bj is divided into Hj membership func-
tions that represent linguistic terms ‘‘very low’’, ‘‘low’’, ‘‘high’’,
‘‘medium low’’, ‘‘very high’’ and etc.

For a membership function ~Fjhj
that defined for a section, if the

shape of this normal membership function is trapezoidal UMF and
triangular LMF, one can define the parameters of this membership
function as shown in Fig. 6. Parameters 1–4 define the UMF,
parameters 5–7 and m define the LMF. Assume that there are
K 2 N targets in C and k ¼ f1; . . . ;Kg. The composition of relation
~R / ~sðai; ckÞ is meaningful only if ai implies ck. Therefore, to find
~sðb; ckÞ;A is partitioned into K subsets according to ck:

A ¼ fA1; . . . ;Ak; . . . ;AKg ð22Þ
ak

i 2 Ak () ak
i ! ck ð23Þ

If ak
i maps to bj with a value Lji, as proposed by Zadeh (1978) and

Civanlar and Trussell (1986), the probability density function of Lji



Table 2
A summary of data sets used in the experiment.

Name Abbreviation Instances Attributes Classes

Statlog Heart Heart 270 13 2
Pima Indians Diabetes⁄ Pima 768 8 2
Wisconsin Diagnostic

Breast Cancer
WDBC 569 30 2

⁄ This data set comes with some missing values.

Fig. 7. Definition of 3 standard membership functions, ~F�1; ~F
�
2 and ~F�3.
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in ½Lj; Lj� can be studied to find the membership degrees of ~sðb; ckÞ.
Therefore, let jAkj be the number of elements in Ak, and jAð5;7Þkjhj

j be

the number of elements of ak
i map to bj with a value Lij such that

Dhjh5 6 Lij 6 Dhjh7. With the information on the distribution of ak
i in

the lower membership functions range, the probability density
functions can be plotted. Following, Sjhj

ðbj; ckÞ can be find:

Sjhj
ðbj; ckÞ ¼

jAð5;7Þkjhj
j

jAkj
ð24Þ

Similarly, if jAð1;4Þkjhj
j is the number of elements of ak

i map to bj with a
value Lij in the upper membership functions range ½Dhjh1;Dhjh4�, the
upper bound of ~sjhj

ðbj; ckÞ can be find:

Sjhj
ðbj; ckÞ ¼

jAð1;4Þkjhj
j

jAkj
ð25Þ

The Eqs. (24) and (25) find the relations between elements in set B
and set C, which are essential during the training process of a clas-
sifier. However, to prepare the inference engines for prediction, the
testing data should be fuzzified in the fuzzification module to form
~Rða; bÞ. With the membership functions defined, finding the ~Rða; bÞ
is straight forward. Firstly, ~Fjhj

, the set of membership functions
developed to find ~sðb; cÞ must be adopted so that both ~sðb; cÞ and
~Rða; bÞ refer to the same set of membership functions. Subsequently,
mapping of values described below gives the membership degrees
of ~Rða; bÞ.

With relation ~Rðai; bjÞ; ai may maps to bj with a value Lji in the
interval LIj . If this Lji falls into the section where ~Fjhj

defines (i.e.
in ½Djhj1;Djhj4�), we can retrieve a membership degree for this mem-
bership function, ~Rjhj

ðai; bjÞ, otherwise ~Rjhj
ðai; bjÞ ¼ 0 for this mem-

bership function (Fig. 6). The upper and lower bound of this
interval membership function, ½Rjhj

ðai; bjÞ;Rjhj
ðai; bjÞ�, is given by:

Rjhj
ðai; bjÞ ¼

ðmÞðLji�Djhj5Þ
Djhj6�Djhj5

if Djhj5 < Lji 6 Djhj6

ðmÞðDjhj7�LjiÞ
Djhj7�Djhj6

if Djhj6 < Lji < Djhj7

0 otherwise

8>>>><>>>>: ð26Þ

Rjhj
ðai; bjÞ ¼

Lji�Djhj1

Djhj2�Djhj1
if Djhj1 < Lji < Djhj2

1 if Djhj2 6 Lji 6 Djhj3

Djhj 4�Lji

Djhj4�Djhj3
if Djhj3 < Lji < Djhj4

0 otherwise

8>>>>>>><>>>>>>>:
ð27Þ

It is possible that in the testing data set, there are some cases that ai

maps to L0ji where L0ji < Lj. In such cases, it is wiser to reconsider

both the membership degrees of Rjhj
ðai; bjÞ and Rjhj

ðai; bjÞ if ~Fjhj
is a

left-shoulder membership function. For the case where
Djhj1 ¼ Djhj2 ¼ Djhj5 ¼ Djhj6, one should set Rjhj

ðai; bjÞ and Rjhj
ðai; bjÞ

to the heights of the corresponding membership functions, i.e. m
and 1 respectively. It is similar for the case when L0ji > Lj. For right

shoulders membership functions ~Fjhj
such that Djhj3 ¼ Djhj4 ¼

Djhj6 ¼ Djhj7, one should also set the membership degrees of both

Rjhj
ðai; bjÞ and Rjhj

ðai; bjÞ to m and 1 respectively, if they are the
heights of the corresponding membership functions.

As a summary, this learning method forms Hj membership
functions for a feature bj, thus, for a ck, it finds

PJ
j¼1Hj membership

degrees for both Sðb; ckÞ and Sðb; ckÞ. The total number of member-
ship degrees of both Sðb; cÞ and Sðb; cÞ is Kð

PJ
j¼1HjÞ. On the other

hand, mapping of an object ai also finds
PJ

j¼1Hj membership

degree for both Rðai; bÞ and Rðai; bÞ. Therefore, with a data set with
I objects, the total number of membership degrees of both Rða; bÞ
and Rða; bÞ is I

PJ
j¼1Hj.

6. Experiment and discussions

6.1. Experiment setup

In this section, the BK subproduct is designed as a classifier
where three different variants, namely the conventional T1FS-
based BK subproduct, IVFS-based BK subproduct and weighted
IVFS-based BK subproduct are tested. Three publicly available
medical data sets, i.e. Statlog Heart (Heart), Pima Indians Diabetes
(Pima) and Wisconsin Diagnosis Breast Cancer (WDBC) are
adopted in the experiment. Table 2 is a summary of these data sets.
We use 5-fold cross validation (5cv), a widely disseminated
approach to conduct the experiment. In this approach, a data set
is randomly divided into 5 non-mutual exclusive subsets with
approximately equivalent number of instances. Before a subset of
the data is tested, the other 4 subsets are used to train the system.
Therefore, 5 runs are performed for each data set. For a compari-
son, we also conduct a reverse modal of this 5cv approach for
weighted IVFS-based BK subproduct, i.e. only a subset of the data
set (about 20%) is used to train the system, and the remaining 4
subsets (about 80%) are tested.

To prepare the data for training and testing of both IVFS-based
BK subproduct and weighted IVFS-based BK subproduct, a set of
three standard interval-valued membership functions (Fig. 7) that
represent ‘‘Low’’ (~F�1), ‘‘Medium’’ (~F�2) and ‘‘High’’ (~F�3) are defined.
These standard membership functions are scaled to the range of
the training data of each of the feature, forming membership func-
tions of each feature. Training and fuzzification are performed
according to the method described in Section 5.

Same procedure is used for T1FS-based BK subproduct, with the
standard interval-valued membership functions replaced with



Table 3
Coordinates of standard membership functions for T1FS.

Trapezoidal F�1 fð0:0;0:0Þ; ð0:0;1:0Þ; ð0:1;1:0Þ; ð0:4;0:0Þg
F�2 fð0:1;0:0Þ; ð0:4;1:0Þ; ð0:6;1:0Þ; ð0:9;0:0Þg
F�3 fð0:6;0:0Þ; ð0:9;1:0Þ; ð1:0;1:0Þ; ð1:0;0:0Þg

Triangular F�1 fð0:0;0:0Þ; ð0:0;1:0Þ; ð0:4;0:0Þg
F�2 fð0:1;0:0Þ; ð0:5;1:0Þ; ð0:9;0:0Þg
F�3 fð0:6;0:0Þ; ð1:0;1:0Þ; ð1:0;0:0Þg
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standard type-1 membership functions. For a fair comparison, a
replacement standard type-1 membership function should be: (i)
‘‘embedded’’ in the corresponding standard interval-valued mem-
bership function, (ii) normal and (iii) with the same support.
Therefore, 2 sets of standard type-1 membership functions are
selected (Table 3).

6.2. Defuzzification

After the inferences, the results from the inference engines are
defuzzified and the following defuzzification strategy is used in
the experiment: firstly, center of sets, or centroids (Karnik &
Mendel, 1998; Lee, 1990b) are computed from the outputs of the
inference engines. Subsequently, compare and rank the centroids
of ~R / ~sðai; ckÞ for all k 2 K . Find ck0 where ~R / ~sðai; ck0 Þ is greater than
~R / ~sðai; ckÞ for k0 2 K but k – k0. The ranking shows that ai has
strongest relation to ck0 . Therefore, ai belongs to this class.

6.3. Weight determination

For the weight determination, features are clustered according
to their influence towards the classification results. In this experi-
ment, features are divided into two groups, namely ‘‘low’’ and
‘‘high’’, according to the influence. The ~F�1 and ~F�3 in Fig. 7 are used
as ‘‘low’’ (fW 1) and ‘‘high’’ (fW 2) weight functions respectively. An
algorithm is needed to distinguish whether a feature should
belongs to high or low weight group. This weighing algorithm
examines each attribute iteratively, using the training data.

Firstly, the data used during the training stage are employed
again. Fuzzify the training data by mapping it to the membership
function sets ~Fj1; ~Fj2 and ~Fj3. This form fuzzy relation ~Rða�; bÞ where
a� 2 A� is the training data.

With leaving out a feature bj 2 B, perform inferences with IVFS-
based BK subproduct, but on training data. Assume I� is the total
number of instances in training data. With this step, for a leaving
out feature bj, we find I�K intervals that measuring the relations
of objects and targets without this feature.

With the defuzzification method described in Section 6.2,
defuzzify these inference results and compare the defuzzified
results with ground truths. Count Gj, the number of instances that
lead to correct inferences by leaving out bj. The higher the Gj, the
Table 4
Average accuracy of experiment with Statlog Heart Disease.

Author Method

Conventional BK-T1FS (Trapezoidal)
BK-T1FS (Triangular)

Our proposed BK-IVFS
BK-IVFS (weighted)
BK-IVFS (weighted)

Mantas and Abellán (2014) Credal-C4.5 (no pruning)
Credal-C4.5 (pruning)

Hu (2013) RSRC-P
Pacheco et al. (2012) GRASP
Ghaemi and Feizi-Derakhshi (2014) FWFOA
Huang and Kechadi (2013) K-means + FOIL
lower the influence of feature bj lead to correct inference. There-
fore, the weight of bj is given by wj:

wj ¼ 1� Gj

I�
ð28Þ

The procedure is repeated for all the features to find the corre-
sponding weights. With the results, features can be divided into
low and high weight groups.
6.4. Results and discussion

This paper aims to improve the BK subproduct with two exten-
sions, namely the IVFSs and a weight parameter. In this section, the
improvement on classification accuracy that brings by each exten-
sion is discussed separately. The accuracy of a test is the ratio of
correctly predicted instances over the complete testing set. The
average of all the 5 runs is computed for all the tests. Tables 4–6
present the accuracy of the tests with Heart, Pima and WDBC
respectively.

The tables show that our extension on BK subproduct from T1FS
to IVFS improves the classification accuracy. Compare to the two
implementations of T1FS-based BK subproduct, IVFS-based BK sub-
product gives higher accuracy in all cases. The accuracy increments
on Heart data set are 1.11% and 1.85%; for Pima data set, the accu-
racy increments are 2.73% and 3.37%; whereas the reading for
WDBC data set is 2.29% and 2.47%. Overall, the improvement rate
for the IVFS-based BK subproduct classifier ranged from 1.34% to
5.39%.

Also, it can be noticed that the proposed weight parameter
boosted the accuracy of the BK-IVFS. Compare to the non-weighted
IVFS-based BK subproduct, the weighted IVFS-based BK subprod-
uct increases the accuracy of Heart, Pima and WDBC datasets by
1.86%, 2.47% and 1.23% respectively. The improvement rate is in
the range 1.31–3.35%. The results also show that both the exten-
sions suggested enhance the classification resolution of the BK sub-
product. Cumulatively, the improvement on classification accuracy
brings by the extensions on the datasets Heart, Pima and WDBC are
3.71%, 6.24% and 3.70% respectively.

To learn more about the IVFS-based BK subproduct based clas-
sifier, the results of this study are also compared with seven state-
of-the-art works using the same data sets. Among all, Mantas and
Abellán (2014) works on all the three data sets as ours, and the
others work on two out of the three data sets, i.e. Hu (2013) and
Ghaemi and Feizi-Derakhshi (2014) work on Heart and Pima,
Pacheco, Alfaro, Casado, Gámez, and García (2012) and Huang
and Kechadi (2013) work on Heart and WDBC, and Li and Liu
(2010) and Ballings and Van den Poel (2013) work on Pima and
WDBC. The comparisons show that the weighted IVFS-based BK
subproduct gives the best accuracies in all cases except the WDBC,
Runs Train-test ratio Accuracy (%)

5 4:1 82.59
5 4:1 81.85

5 4:1 83.70
5 4:1 85.56
5 1:4 82.59

10 9:1 80.04
10 9:1 80.33

5 4:1 84.00
10 9:1 78.10
10 9:1 81.35

5 4:1 83.80



Table 5
Average accuracy of experiment with Pima Indian Diabetes.

Author Method Runs Train-test Ratio Accuracy (%)

Conventional BK-T1FS (Trapezoidal) 5 4:1 70.97
BK-T1FS (Triangular) 5 4:1 69.93

Our proposed BK-IVFS 5 4:1 73.70
BK-IVFS (weighted) 5 4:1 76.17
BK-IVFS (weighted) 5 1:4 73.60

Mantas and Abellán (2014) Credal-C4.5 (no pruning) 10 9:1 73.19
Credal-C4.5 (pruning) 10 9:1 74.15

Li and Liu (2010) SVM Gaussian 30 1:2 64.00
SVM Polynomial 30 1:2 62.52
SVM CPBK 30 1:2 71.15

Hu (2013) RSRC-P 5 4:1 74.60
Ghaemi and Feizi-Derakhshi (2014) FWFOA 10 9:1 71.11
Ballings and Van den Poel (2013) KF 10 1:1 71.09–74.48a

a In this research, 13 models were developed, and the median of the tests, instead of arithmetic mean were presented.

Table 6
Average accuracy of experiment with Wisconsin Diagnosis Breast Cancer.

Author Method Runs Train-test ratio Accuracy (%)

Conventional BK-T1FS (Trapezoidal) 5 4:1 91.56
BK-T1FS (Triangular) 5 4:1 91.74

Our proposed BK-IVFS 5 4:1 94.03
BK-IVFS (weighted) 5 4:1 95.26
BK-IVFS (weighted) 5 1:4 94.03

Mantas and Abellán (2014) Credal-C4.5 (no pruning) 10 9:1 95.08
Credal-C4.5 (pruning) 10 9:1 95.12

Pacheco et al. (2012) GRASP 10 9:1 94.80
Li and Liu (2010) SVM Gaussian 30 1:4 83.14

SVM Polynomial 30 1:4 58.58
SVM CPBK 30 1:4 93.26

Huang and Kechadi (2013) K-means + FOIL 5 4:1 94.60
Ballings and Van den Poel (2013) KF 10 1:1 94.19–95.61a

a In this research, 13 models were developed, and the median of the tests, instead of arithmetic mean were presented.
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where one of the models proposed by Ballings and Van den Poel
(2013) leads with a 0.35% gap.

As we proposed a learning mechanism in the BK subproduct,
therefore, as to many other supervised training solutions, the pre-
diction accuracy increases when the number of training data
increases. Meanwhile, this method shows an advantage: it manage
to train a system with low amount of training data, as long as the
pattern of data distribution is obtained. This conclusion can be fur-
ther affirmed with the experiment results with reverse 5-fold cross
validation, where only one subset is used to train the system,
whereas the other 4 subsets are test data (train-test ratio 1:4). In
the literature, there are very few researches that conducted on
low amount of training data, therefore, limited comparisons can
be found. Comparing to the state-of-the-art solutions with higher
train-test ratio (Tables 4–6), our proposed method that utilized a
low amount of training data (ratio 1:4), the obtained accuracies
are comparable and in some cases even better.

7. Conclusion

The BK subproduct is one of the outstanding reasoning schemes
that based on fuzzy relational theory. In this paper, we study this
reasoning scheme as a fuzzy inference engine. Furthermore, the
fuzzy inference engine is implemented as a classifier to classify
three widely adopted public data sets. Experiment results show
that this inference engine outperform other classifiers that work
on the same datasets.

While many others still working on fuzzy inference systems
that based on rules, this research continues the exploration of
performing inferences when rules can not be defined or well
defined. The contributions of this research are threefold: (i) A sub-
sethood measure for IVFS is defined, where we extend the BK sub-
product from T1FS-based to IVFS-based. This extension increases
the ability of the BK subproduct to capture uncertainty in reason-
ing. (ii) Incorporating the weight parameter in the BK subproduct
reasoning, with theoretical explanation on the validity of this
weight parameter. (iii) A novel training mechanism is developed
to construct the knowledge based for the BK subproduct based
inference engines. This mechanism solved the problem where
expert knowledge is required to construct systems that based on
BK subproduct.

In term of theoretical implication, this research proposed a high
reliability inference engine that is rule-free, tolerate to uncertainty
with IVFS and consider features weight. Compare to many other
fuzzy inference engines which defining rules is compulsory, this
inference engine works without rules. This makes the development
of inference engines on systems which rules are ill-define become
easy (Kolodner, 1992). Furthermore, a new automatic learning
mechanism is also proposed in this research. This automatic learn-
ing mechanism not only fast and efficient, but also able to train a
system with limited training data. In the demonstration in Sec-
tion 6, we show that even only 20% of the data is used in the train-
ing, the experiment results still outperform some other state-of-
the-art researches.

The strength of this BK subproduct-based inference engine
includes high accuracy, strong mathematical background
(Stepnicka & De Baets, 2010, 2013), tolerate to uncertainties and
etc. However, this inference engine associates with a weakness in
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the weight determination. In case of a dataset with I� training data,
J features and K possible targets, a number of I�JK inferences in the
form of Eq. (10) are needed to determine the weights associate to
all the features. This weight computation procedure is relatively
high computational cost.

Therefore, one of the future research direction is on a better
weight determination algorithm. This algorithm is a key to boost
the efficiency and accuracy of the weighted BK subproduct based
inference engines. The advancement of feature selection algorithm
Luukka (2011) may provide clues in developing this mechanism.
The second future research direction is on the fine tuning of mem-
bership functions. Three standard membership functions are used
across all the features in all the data sets. It is reasonable to believe
that with an algorithm to fine tune of the standard membership
functions (Fig. 7) and weight functions, the classification accuracy
can be improve. Technology such as artificial neural network or
similar can be considered in this work in the future. Last but not
least, the developing the application of BK subproduct is another
future research direction. The BK subproduct is a study on the com-
position of relations between sets that are not directly related.
Classifier is only one of the possible applications of BK subproduct.
Since relations provides important notions in human reasoning, it
is possible to apply BK subproduct in other problems such as data
mining, computing with words and engineering control.
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