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Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to
deal with video denoising problems by adopting a two-steps process, namely the video epitome and
sparse coding. First, the video epitome will summarize the video contents and remove the redundancy
information to generate a single compact representation to describe the video content. Second, employ-
ing the single compact representation as an input, the sparse coding will generate a visual dictionary for
the video sequence by estimating the most representative basis elements. The fusion of these two
methods have resulted an enhanced, compact representation for the denoising task. Experiments on
the publicly available datasets have shown the effectiveness of our proposed system in comparison to
the state-of-the-art algorithms in the video denoising task.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Since decades, research in denoising has grown progressively
into one of the important research in the image processing domain.
One of the main reasons is signals, including audios, images, and
video sequences, are subjected to random noise contamination
during the process of signals acquisition or transmitting. Besides
that, low-end imaging devices such as mobile phones and digital
cameras have became ubiquitous, there are ever more demands
for reliable denoising solutions as a good denoising solution will
be able enhance the performance of subsequent processes such
as compression (Papadopoulos, Kalogeiton, Chatzichristofis, &
Papamarkos, 2013), segmentation (Goncalves & Bruno, 2013), rec-
ognition (Chan & Liu, 2009), object detection (Karasulu &
Korukoglu, 2012) and tracking (Lim, Tang, & Chan, 2014b).

This paper is primarily focused on video denoising, and there-
fore only related work in this area will be reported. Interested
readers are encouraged to refer to Buades, Coll, and Morel
(2005), Milanfar (2013) and Rao and Chen (2012) for a comprehen-
sive review on the related literature. Principally, video denoising
can be classified into two broad categories: the spatial domain
and the transform domain, respectively. In the former, pixel infor-
mation is utilized to perform the denoising, while in latter, the spa-
tial frequency spectrum is employed. From here, it can be further
detailed into methods that either employ spatio-temporal or tem-
poral correlation approaches. The spatio-temporal approaches use
both the spatial and temporal information in denoising, but did not
compensate with motion features. On the other hand, the temporal
correlation approaches are performed based on motion compensa-
tion filters. These filters are employed to create estimated trajecto-
ries to remove the temporal non-stationarity of the video for the
denoising task. In this work, we intend to address the video deno-
ising in spatial domain using the spatial–temporal approaches. Par-
ticularly, we extended the Benoît, Mairal, Bach, and Ponce (2011)
work from 2D to 3D, i.e. from image domain to video domain uti-
lize both the sparse coding and video epitome in a unified frame-
work, namely the video epitome and sparse coding framework
(VESC), as well as from monocular image to color video.

Sparse coding consists in representing the signals (data vectors)
as sparse linear combinations of basis elements, and has been
shown to achieve better performance on denoising. For example,
Peyré (2009) proposed a generative model for textures using the
sparse description of image content. This model is based on a
sparse expansion of texture patches into a redundant dictionary.
To synthesize a texture, an optimization solution to find the tex-
ture that having sparse patches in the dictionary is performed.
While most of the proposed sparse representations for signals were
used to deal with monocular images, Mairal, Elad, and Sapiro
(2008) investigated on learning the dictionary using color image.
Instead of creating individual dictionaries for each color channel
and perform the denoising separately on each color channel in
the noisy image, they concatenated the RGB values to a vector
and trained on those directly. Empirically, this method has proofed
to be more effective in color image denoising task compare to
model each of the channel separately. However, accordingly to
Benoît et al., 2011, the sparse coding in this paper extracts image
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Fig. 1. A summary of our denoising system. From the noisy video, we extract the 3D video cube features. Then, we learn the video epitome from these 3D features, through
Expectation–maximization (EM) algorithm. The dictionary is learnt using the sparse coding from the converged epitome, and is updated iteratively. Finally, we reconstruct
the video via the converged sparse dictionary.
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patches information from unstructured set of patches in a random
manner, and such solution lacks of shift-invariance properties.

Therefore, Benoît et al. (2011) and Aharon and Elad (2008) pro-
posed a variant – an epitome-based dictionary formulation to han-
dle this limitation. The work unify both the epitome approach
(Jojic, Frey, & Kannan, 2003) and dictionary learning framework
by allowing an image patch to be represented as a sparse linear
combination of several patches extracted from the epitome. Epit-
ome is a simple appearance and shape model for image. More gen-
erally, it is a summarized version of the image which retains the
visual quality as the visual input. As such, Benoît et al. (2011)
and Aharon and Elad (2008) differed from the aforementioned dic-
tionary learning with the introduction of structured dictionaries
which can be obtained from the epitome. Though it had shown
promising denoising results, these work are currently constrained
to monocular image only. Our proposed method extend Benoît
et al. (2011) in such a way that our video denoising approach
require only one video epitome and one KSVD dictionary, while
Benoît et al. (2011) requires one epitome and one KSVD dictionary
for each frame in a video clip. With this, our proposed approach
greatly reduce the computational cost; while in the meantime,
empirically, obtain good denoising results compare to Benoît
et al. (2011) in publicly available datasets.

As a summary, our main contribution is we extended the Benoît
et al. (2011) work (1) from image domain to video domain, and (2)
from monocular image to color image sequences. Our motivation is
nowadays, the resolution of display devices is often much higher
than that of video, particularly in the case of video streamed over
the internet, and a solution that is being able to exploit the high
resolution of modern display devices when rendering video is
essential. Nonetheless, as aforementioned, a good denoising solu-
tion will be able to enhance the performance of subsequent pro-
cesses. Experimentally, we first show that our proposed system
is comparable to the state-of-the-arts approaches in removing
additive white Gaussian noise (AWGN) on benchmark videos.
Then, we show the importance of denoising as a preprocessing step
for further analysis of video sequences (i.e. object tracking).

The rest of the paper is structured as follows: we will discuss
the related work in Section 2. Then, we will explain how our deno-
ising system work, and how it differs from Benoît et al. (2011) in
Section 3. Following on, we show the performance of the proposed
framework in terms of publicly available datasets, and compare
with state-of-the-arts approaches in Section 4. Besides, we also
demonstrate the importance of a good denoising algorithm in
object tracking application. Finally, we conclude our findings in
Section 5.

2. Related work

Existing denoising methods can be categorized into spatial and
transform domain, respectively where the spatial domain (Aharon
& Elad, 2008; Benoît et al., 2011; Cheung, Frey, & Jojic, 2008; Elad &
Aharon, 2006; Jojic et al., 2003; Mairal et al., 2008; Peyré, 2009;
Protter & Elad, 2009) utilizes pixel information to denoise, while
the transform domain (Blu & Luisier, 2007; Dabov, Foi, &
Egiazarian, 2007; Dai, Au, Pang, & Zou, 2013; Dai et al., 2010;
Eksioglu, 2014; Varghese & Wang, 2010; Wang, Yang, & Fu, 2010;
Wu, Cao, Tao, & Zhuang, 2013; Yang & Ren, 2011) make use of spa-
tial frequency spectrum to reduce the noise. Some of these
research works focus on spatial–temporal approaches without
the motion compensation cues (Boulanger et al., 2010; Dabov
et al., 2007; Kuang, Zhang, & Yi, 2014; Protter & Elad, 2009;
Rubinstein, Zibulevsky, & Elad, 2010), while the rest utilize the
motion compensation filters (Wang et al., 2010; Yang & Ren,
2011). This paper is primarily focused on video denoising, and
therefore only the related work in this area will be reported. Read-
ers can refer to Buades et al. (2005), Milanfar (2013) and Rao and
Chen (2012) for more comprehensive survey.

Dictionary learning has been actively used in machine learning
domain for image classification problems, such as the Bag-of-
Words model and spatial pyramid matching (Lazebnik, Schmid, &
Ponce, 2006). In recent years, sparse dictionary learning has been
very popular as its ability to enhance the shift-invariance properties
via direct sparse decomposition technique over redundant dictio-
naries. In the denoising domain, few notable works are also found
to utilize this concept. For instance, Elad and Aharon (2006) learn
the sparse dictionary using KSVD algorithm for image denoising,
and Protter and Elad (2009) extends Elad and Aharon (2006) to
the video domain. However, the denoising results from all these
methods encounter a fluctuation issue due to the randomness of
the image patches, i.e. these methods learn the sparse dictionary
using randomly selected image patches from the noisy image.

Therefore, Aharon and Elad (2008) introduce the Image-Signa-
ture-Dictionary (ISD) that is similar to the epitome approach
(Jojic et al., 2003), but replaces the epitome initialization with
sparse representations. With this, ISD approach uses less memory
and obtains shift and scale flexibilities. Apart from the ISD,
Benoît et al. (2011) proposed a different strategy, i.e using the epit-
ome approach similar to Jojic et al. (2003) that apply epitome ini-
tialization to form a compact representation for the noisy image.
From the generated epitome, they extract all the overlapping
patches to learn the sparse dictionary. Both methods aim to obtain
the best image patches to learn the dictionary. Though the denois-
ing results are promising, both methods are currently limited to
monocular image denoising task only.

Therefore, in this paper, we extend Benoît et al. (2011) from
monocular image domain to color video domain. We employ the
epitome to find those important patches from noisy video, and
learn the sparse dictionary from the built epitome. As indicated
in Benoît et al. (2011), this unified framework would gain
enhanced shift-invariance properties. Particularly, the proposed
method is benefiting from both the advantages of epitome that is
built using overlapping patches in compact representation, and
sparse dictionary that have sparse and redundant representation.



Fig. 2. First row: Example frames from the ‘leaves’ video. Second row: Example epitome visualized from each EM iterations. From left to right: 1st to 10th iterations.
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3. Methodology

In this section, we discuss the proposed VESC framework in
detailed. From a noisy video, we first extract video cubes from
the video as 3D features. Then, we learn the epitome from these
features in a condensed volume representation. Subsequently, we
learn the sparse dictionary from the built epitome, i.e. in our
approach, the atoms for the dictionary are those patches extracted
from the video epitome, which is different from those traditional
methods that directly sample patches from the input video. Finally,
we reconstruct the video using the converged sparse dictionary.
Fig. 1 shows the summary of our framework.

3.1. Feature extraction and epitome construction

To extract the features, we adopt the feature extraction method
as to Cheung et al. (2008). Given a video sequences V, a set of 3D
video cubes fZkgK

k¼1 are extracted randomly. The 3D cubes can be
in any size, but in our paper, we use cube size of F � N � N, where
F is the number of frames, and N represents the patch size. These
3D cubes contain an ordered set of pixels indexed by their coordi-
nates in the video: zk ¼ fzI;kg; I 2 Sk ¼ fðx; y; tÞ; ðxþ 1; yþ 1;
t þ 1Þ; . . . ; ðxþ N; yþ N; t þ FÞg, where I is ðx; y; tÞ coordinate. These
coordinates will be stored in an ordered set Sk.

A video epitome E of size p� q� r is a condensed version of the
corresponding input video V of size X�Y � T where p� X; q� Y

and r is the number of frames a video epitome will be consisted
(Cheung et al., 2008). Let Z = fZkgK

k¼1 be the patch level representa-
tion of V, i.e., is the set of all possible patches from V. The video epit-
ome E corresponds to V is estimated using Z and represents the
salient visual contents of V effectively. More specifically, the video
epitome E is derived by searching for a set of patches in E that cor-
responds to the set Z based on Gaussian probability distribution.
The patches in E are defined by a set of mapping, T ¼ TkðIÞ, which
shows a displacement between two patches V and E respectively.
Assuming distribution at each video epitome location to be Gauss-
ian, the conditional probability for mapping patches in epitome to
set of patches in a video should fit the following generative model:

pðZkjTk; EÞ ¼
Y

i2Sk

NðzI;k;lTk
ðIÞ;/Tk

ðIÞÞ ð1Þ

where lTk
ðIÞ; /Tk

ðIÞ are the mean and variance of a Gaussian dis-
tribution N ; T is the mapping function, and k represents the num-
ber of cubes extracted.

Solving the maximum likelihood problem leads to expectation
maximization algorithm. We initialize l to be normally distributed
using the mean pixel intensity of the video (Fig. 2a). During the E-
step, optimum Tk from Zk to E is estimated. For each of the input
patch k, we will find the posterior distribution as:

pðTkjZk; EÞ ¼
pðZkjTk; EÞqðTkÞP
k2K pðZkjTk; EÞqðTkÞ

ð2Þ

For the M-step, given the new set of Tk, the l and / at epitome’s
coordinate (ex; ey; et) are computed, where qðTkÞ is the mean of all
the pixel intensities from the video patches:

lðex ;ey ;etÞ ¼
P

I

P
k ðex; ey; etÞ ¼ TkðiÞ
� �

zI;kP
I

P
k½ðex; ey; etÞ ¼ TkðIÞ�

ð3Þ

/ðex ;ey ;etÞ ¼
P

I

P
k ðex; ey; etÞ ¼ TkðIÞ
� �

ðzI;k � lðex ;ey ;et ÞÞ
2

P
I

P
k ðex; ey; etÞ ¼ TkðIÞ
� � ð4Þ

This process will be terminated once the convergence is
reached. We summarize the epitome construction process in Algo-
rithm 1. Fig. 2 shows the original video sequence (‘leaves’
sequence) and the corresponding transition of the epitome from
iteration 1st to 10th.

Algorithm 1. Epitome construction

Require: Randomly initialized video cubes fZkgK
k¼1

Ensure: All parameters are set: epitome size, number of
iterations
1. Initialize epitome, E ¼ fl;/g by normally distributed
video mean pixel intensity.
repeat

a. E-Step: Fix mean, l and variance, / to optimize target
function Tk.

b. M-Step: Fix target function Tk to optimize l and /.
until maximum number of iterations are reached.
3.2. Sparse coding

In this section, we will discuss how the constructed epitome is
unified in the proposed framework to learn the sparse dictionary. A
summary of the approach is shown in Algorithm 2.

3.2.1. Dictionary learning
The idea of learning dictionaries was first proposed by

Olshausen and Field (1997) in 1996, aiming at given a set of
Y ¼ ðcjÞ

m
j¼1
2 Rn�m of m signals cj 2 Rm, find the best dictionary

D ¼ ðdiÞpi¼1 of p atoms di 2 Rn to all the data. More generally, the
dictionary learning perform an optimization both on the dictionary



Fig. 3. Example of KSVD codebook on different noise levels using the ‘leaves’ video. From left to right: r ¼ 10; 30; 50.
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D and a set of coefficients a0 ¼ ðajÞmj¼1 2 Rp�m where for
j ¼ 1; . . . ;m;aj is the set of coefficients of the data cj. In this paper,
each cj 2 Rn is a patch of size n ¼ N � N extracted from the video
epitome, E (Section 3.1). We consider a dictionary D 2 Rn�p of
p P n atoms in Rn. The initial dictionary D is computed by a ran-
dom selection of patches from E, and we normalised them to be
an unit-norm. Then, fixing the D and let the video epitome E as
the current residuals, we optimize the aij according to:

8ij aij ¼ min
a
kDaij � Ek2

2 ð5Þ

That is, the mechanism starts with finding an atom in the dictio-
nary that can show the maximum correlation with the current
residuals. In other words, we first find the best atom in the dictio-

nary D that can minimize the error, Err ¼ kDa� Ek2
2 between the

columns, D. If Err does not satisfy the target threshold
ffiffiffi
p
p

Cr, where
p is total number of atoms d; C is a noise gain of 1.15 and r is the
noise applied to the video, another atom will be selected from D to
further minimize Err. These steps are repeated until the Err satisfies
the target threshold. We summarize these steps in Algorithm 2.
Note that, the optimization algorithm was adopted as a part of
the KSVD algorithm Elad and Aharon (2006). Fig. 3 shows sample
dictionary generated based on the ‘leaves’ video in different noise
levels.

Algorithm 2. Sparse coding

Require: Constructed video epitome from Algorithm 1
Ensure: All parameters are set: number of atoms, maximum

number of iterations, atom optimization threshold
repeat

1. Search sequentially an atom, d in the dictionary that
can minimize the error Err between the columns of D with
the current residuals,

2. If Err does not satisfy the error threshold, new atom, d0

is added into set of selected atoms, dset

3. Update the residuals by projecting the video epitome E
onto the dset .

until kDa� Ek2
2 <

ffiffiffi
p
p

Cr.
3.2.2. Dictionary update and video reconstruction
Once the sparse coefficients aij are computed, one can update

the dictionary. Let dl where l 2 1 . . . L represents the columns in
dictionary D, we select patches that are associated with the atom,
xl ¼ fði; jÞ such that aijðlÞ – 0g. Then, we compute the representa-
tion error for each index ði; jÞ 2 xl according to

el
ij ¼ RijE� Daij þ dlaijðlÞ ð6Þ
where Rij is the operator that extracts patches from E. We set Gl as
the matrix whose columns are the el

ij, and al as the row vector
whose elements are the aijðlÞ . Finally, we update dl and the aijðlÞ
by minimizing:

argmin
al ;dl

kGl � dlalk2
2 ð7Þ

The dictionary update is considered accomplished once all the
atoms in D are updated; and the VESC learning will be terminated
once the maximum number of iterations are reached. The denoised
video will be reconstructed using the converged sets of sparse coef-
ficients â:

V̂ ¼ Dâ ð8Þ

where V̂ is the denoised video sequence.
4. Experiments

In this section, we show the effectiveness of the proposed
method in publicly available datasets, and a comparison with the
state-of-the-art solutions. Unless specified, our proposed method
will use these settings for all experiments. The epitome size is
p ¼ q ¼ 40, and r ¼ 1. The number of frames that used in the fea-
ture extraction, F, is 2. and the number of iterations for epitome
is set to 10. For the sparse coding, the dictionary has 256 atoms,
and it is set to use 20 iterations during the denoising process. For
the video contamination process, we apply AWGN in multiple
noise levels for different experiment purposes.

To make a video sequences clearer or subjectively better, we
tend to have different criteria to evaluate with. In here, we provide
visualization in different experimental settings, as well as a PSNR
evaluation (Eq. (9)) as a standard benchmark to compare with
the state-of-the-art solutions.

PSNR ¼ log10
65025

3Z�1P
c¼R;G;B

P
IðVcðIÞ � V̂ cðIÞÞ

2 ð9Þ

where I denotes the spatial coordinate of pixels (as in Section 3.1)
and Z is the total number of pixels in an image.

Patch size selection: To select the optimum patch size for our
denoising system, we first run experiments on the ‘leaves’ video
using different patch sizes. The ‘leaves’ video is publicly available
(Cheung et al., 2008) and contains 17 frames with a frame size
200 � 150. We perform experiments using N ¼ f6;8;10;12g and
the results are shown in Fig. 4. It is clear that N ¼ 8 is the optimum
settings for the denoising task as it has the highest PSNR. Besides,
we visualize the ‘leaves’ frames in Fig. 5 to show that N ¼ 8 gives
optimum result qualitatively. From the Fig. 5, N ¼ f6;10;12g seem
to lose more background details than N ¼ 8. Based on this, we had
chosen N ¼ 8 throughout the rest of our experiments.
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Fig. 4. The PSNR(db) results in terms of different patch sizes, N using the ‘leaves’
video.
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Comparison with related methods: Since our denoising sys-
tem are built based on the idea of Benoît et al. (2011), Cheung
et al. (2008) and Elad and Aharon (2006), therefore we compare
our denoising performance with all these three approaches to
show the effectiveness of the proposed method. Note that, since
Benoît et al. (2011) and Elad and Aharon (2006) are image denois-
ing framework, hence frame-by-frame denoising is performed for
the video denoising task.

In this experiment, we employed the ‘leaves’ and ‘tennis’ videos.
The ‘tennis’ video consists of a size of 240 � 352, with 150 frames.
Fig. 6 presents the sub-sample denoising performance for Benoît
et al. (2011), Cheung et al. (2008), Elad and Aharon (2006) and
VESC qualitatively. Visually, we could notice that resultants from
Cheung et al. (2008) smoothen both the videos, and therefore have
a relatively low PSNR as illustrated in Fig. 6a and b, respectively. On
the other hand, Benoît et al. (2011), Elad and Aharon (2006) and
VESC have very competitive results, and hard to be differentiated.
To handle this issue, we deduce another comparison in Fig. 7b and
d for both the ‘leaves’ and ‘tennis’ video to highlight the advantages
of VESC over Elad and Aharon (2006) and Benoît et al. (2011). In
most of the frames for both videos, VESC are shown to outperform
the Elad and Aharon (2006) in frame-to-frame basis by a clear mar-
gin, resulting in an overall improved performance. Since VESC is an
extension of Benoît et al. (2011), it is expected that both methods
will perform similarly. However, one must note that the VESC is
advanced in terms of computational cost, as we only learn one
set of epitome and dictionary for the video denoising task, while
on the other hand, for Benoît et al. (2011) approaches, it needs to
learn the epitome and dictionary for each frame, which is much
time consuming.

Tables 1 and 2 summarize the comparison between Benoît et al.
(2011), Elad and Aharon (2006), Cheung et al. (2008) and VESC,
Fig. 5. Visualization on different patch siz
using different noise levels, r = {10, 20, 30, 40, 50} for the ‘leaves’
video, and r ¼ f15;25g for the ‘tennis’ video, respectively. In
Table 1, it can be noticed that Cheung et al. (2008) has the lowest
PSNR, while Benoît et al. (2011), Elad and Aharon (2006) and our
proposed method have very competitive results. These quantita-
tive findings are inline to our early qualitative results illustrated
in Fig. 6. Similar results were achieved when using the ‘tennis’
video. As a summary, our approach outperform both methods
(Cheung et al., 2008; Elad & Aharon, 2006) in all different noise lev-
els, except when r ¼ 20 where the Elad and Aharon (2006) result is
in par with our proposed method. These results have clearly shown
that our method is significantly better than Cheung et al. (2008)
and Elad and Aharon (2006) approaches, in both qualitatively
and quantitatively. As expected, both the resultants from Benoît
et al. (2011) and VESC are almost similar since the VESC is an
extension from Benoît et al. (2011). However, in a much less com-
putational cost, it makes the VESC a more favorable choice in video
denoising task over the Benoît et al. (2011).

Comparison with other state-of-the-art methods: A compari-
son is performed using 6 video sequences, namely the ‘bus’, ‘chair’,
‘football’, ‘renata’, ‘salesman’, and ‘tennis’. All these video frames are
publicly available and we employed the color version, as similar to
Dai et al. (2013). The comparison results are shown in Table 3. We
specifically compare with MHMCF (Guo, Au, Ma, & Liang, 2007)
and NLMC (Goossens, Luong, Aelterman, Pižurica, & Philips, 2010),
as both of them are solutions in the spatial domain, similar to our
proposed method. Besides, we also compare our methods with
WRSTFC (Zlokolica, Pizurica, & Philips, 2005) which is a wavelet-
based denoising method, LRGB and LRGBjme which are the degraded
version of CIFIC (Dai et al., 2013), LAYUV (Dai et al., 2010) which is
an extension from the MHMCF, but in the transform domain, STGSM
(Varghese & Wang, 2010) as the latest grayscale video denoiser,
VBM3D (Dabov et al., 2007) as the latest grayscale image denoiser,
and CIFIC that applied intercolor prediction in transform domain.
From the results, we demonstrate that our proposed denoising sys-
tem outperform all the spatial domain-based denoising methods
(MHMCF and NLMC) when noise, r ¼ 15. Even in a higher noise set-
ting (r ¼ 25), our proposed method still outperform the MHMCF by
1.78 db, and is comparable to NLMC with 0.12 db difference. In both
noise settings, despite that solutions based on spatial domain are
always lacked behind in compare to the transform-domain based
solutions that are claimed to be more sophisticated, we still achieve
comparable results as shown in the Table 3.

Specifically, a comparison with the current best implementa-
tion, the CIFIC (Dai et al., 2013), we only degrade by 1.65 db and
2.46 db in the r ¼ f15;25g settings, respectively. In overall, we
achieve superior results in a less noisy setting, and comparable
results on higher noisy settings, as compare to other state-of-the-
art algorithms, quantitatively. Furthermore, we show a qualitative
es, N on frame 1 of the ‘leaves’ video.



Fig. 6. Denoising results on ‘leaves’ and ‘tennis’ videos. From left to right: Original frame; noisy frame; KSVD; Epitome; VESC. First row indicates the frame 1 result, while the
second row shows the frame 10 result.

Table 1
Result of our proposed method compared to video epitome (Cheung et al., 2008) and
KSVD (Elad & Aharon, 2006) on ‘tennis’ video in PSNR (db).

Noise level, r 15 25

Noisy 24.78 – 20.41 –

Benoît et al. (2011) 30.43 +5.65 27.39 +6.98
Elad and Aharon (2006) 30.29 +5.51 27.09 +6.68
Cheung et al. (2008) 19.70 �5.08 20.01 �0.30
VESC 30.44 +5.66 27.39 +6.98

Bold values indicate best result.
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comparison between state-of-the-art methods with our proposed
method, for the ‘tennis’ sequence using r ¼ 25, in Figs. 8 and 9.
Subjectively, we could visually notice there is a significant
improvement of our method over the video epitome, and achieved
similar performance to both the KSVD and NLMC in the Fig. 8.
Please note that, despite the proposed method has a lower PSNR
compare to the NLMC, we felt that the background patches (wall)
in NLMC are over-smoothed compare to the original video, which
lose the textures information. In our case, we manage to preserve
the background texture better.

Then, in Fig. 9, we show our investigation of the denoising qual-
ity where a zoom into the bottom left region of frame 69 of the
‘tennis’ video is conducted. From the figure, it is noticed that the
video epitome perform poorly in preserving the table tennis net
texture. Meanwhile, our denoising system are still comparable to
KSVD and NLMC, although losing to CIFIC in terms of preserving
table tennis net texture. In conclusion, the visualization further
validate our propose method advantage over video epitome and
comparable to KSVD and NLMC.
4.1. Application to visual tracking

We also show using a simple tracking example that a good
denoising algorithm is very important to enhance the performance
of subsequent processes in the image processing domain. We
employ the ‘tennis’ video and track the table tennis ball overtime.
In this experiment, we prepare 3 different types of videos. The ori-
ginal video sequences serve as the groundtruth, a noisy video set-
ting that has r ¼ 25, and a denoised video sequence using VESC.
Adopted the tracking algorithm as to Lim, Chan, Monekosso, and
Remagnino (2014a), the tracking results are as shown in Fig. 11.
As expected, in a noisy video, the tracking algorithm fails due to
the random noise (as shown in Fig. 11b), while in the denoising
video using the VESC, the tracking results (in Fig. 11c) are compa-
rable to the groundtruth (in Fig. 11a). From here, it shows the effec-
tiveness of our denoising solution to handle the post-processing.
4.2. Discussions

Empirically, we have shown that the proposed VESC is capable
to handle AWGN and significant to the state-of-the-art approaches
in the spatial domain. Comparison to its variant – Benoît et al.



Table 3
Comparison to state-of-the-art denoising algorithms. Results on PSNR(db).

MHMCF NLMC VESC LRGB LRGBjme LAYUV WRSTFC STGSM VBM3D CIFIC2ref CIFIC3ref

r = 15
Bus 28.73 30.64 31.36 30.90 31.48 32.99 30.93 30.48 30.55 33.14 33.47
Chair 32.26 34.03 34.55 34.84 35.24 35.73 34.44 35.03 36.08 36.25 36.40
Football 27.77 29.77 32.85 29.58 29.98 31.02 N/A 29.88 30.57 31.33 31.59
Renata 29.37 31.04 31.32 31.95 32.31 32.90 31.19 32.69 32.76 33.14 33.26
Salesman 31.16 32.12 32.29 33.16 33.94 34.54 34.59 33.97 35.13 35.04 35.18
Tennis 29.80 30.85 30.44 31.14 31.71 32.49 31.38 31.29 32.38 32.58 32.76
Average 29.85 31.41 32.13 31.93 32.44 33.28 32.22 32.69 32.91 33.58 33.78

r = 25
Bus 25.67 27.82 27.77 27.73 28.56 29.98 28.25 27.73 27.81 30.15 30.48
Chair 29.19 31.08 30.69 32.17 32.82 33.18 31.80 32.70 33.91 33.60 33.71
Football 24.85 27.32 29.84 26.81 27.39 28.31 N/A 27.23 27.80 28.60 28.82
Renata 26.13 27.94 27.70 29.04 29.77 30.24 28.96 30.33 30.23 30.62 30.74
Salesman 27.64 29.03 27.43 30.00 31.09 31.49 32.04 30.66 32.13 31.93 32.10
Tennis 26.65 28.36 27.39 28.03 28.61 29.41 28.80 28.53 29.61 29.54 29.74
Average 26.69 28.59 28.47 28.96 29.71 30.44 29.97 29.53 30.25 30.74 30.93

Bold values indicate best result.

Table 2
Result of our proposed method compared to video epitome (Cheung et al., 2008) and KSVD (Elad & Aharon, 2006) on ‘leaves’ video in PSNR (db).

Noise level, r 10 20 30 40 50

Noisy 28.33 – 22.40 – 19.05 – 16.77 – 15.07 –

Benoît et al. (2011) 31.10 +2.77 26.63 +2.23 23.46 +4.41 20.84 +4.07 18.70 +3.63
Elad and Aharon (2006) 31.09 +2.76 26.63 +2.23 23.35 +4.30 20.78 +4.01 18.61 +3.54
Cheung et al. (2008) 16.70 �11.63 16.90 �5.50 16.98 �2.07 17.04 +0.27 16.94 +1.87
VESC 31.12 +2.79 26.63 +2.23 23.45 +4.40 20.83 +4.06 18.71 +3.64

Bold values indicate best result.
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Fig. 7. (a) and (b): Frame-by-frame denoising results on ‘leaves’ video with r ¼ 10; (c) and (d): Frame-by-frame denoising results on ‘tennis’ video with r ¼ 25. The left
column ((a) and (c)) shows the denoising results for video epitome (Cheung et al., 2008), KSVD (Elad & Aharon, 2006), image epitome with sparse coding (Benoît et al., 2011)
and VESC in a noise-contaminated video; while the right column ((b) and (d)) is a zoom-in analysis to visualize the performance gap for KSVD (Elad & Aharon, 2006), image
epitome with sparse coding (Benoît et al., 2011), and VESC, respectively.
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Fig. 10. Example of the denoising results with Poisson noise at frame 38.

Fig. 11. Visual tracking in tennis sequence for frame 38. (a) is the original frame (as groundtruth); (b) is contaminated by AWGN with r ¼ 25; (c) is the tracking result after
denoised by VESC. It can be noticed that the tracking algorithm fails to track the ball in the noisy image.

Fig. 9. Visualization of denoising results using different methods on ‘tennis’ sequence frame 69, which is zoomed into bottom left corner, and noise level, r ¼ 25.

Fig. 8. Visualization of denoising results using different methods on ‘tennis’ sequence frame 69, and noise level, r ¼ 25.
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(2011), we also shown that the proposed VESC is advanced in
terms of computational cost as the Benoît et al. (2011) require
one epitome and one KSVD dictionary for each frame in a video clip
for video denoising, while the VESC unified one epitome and one
KSVD dictionary for the entire video clip. However, one limitation
in the VESC is that it does not cope well with non-Gaussian noise.
For example. we apply Poisson noise into the ‘leaves’ video, and
show the denoising results in Fig. 10. As to our expectation, the
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VESC does not able to cope well in the Poisson noise – a type of
non-Gaussian noise. We anticipate that similar results will be
achieved using other non-Gaussian noise such as impulse noise,
multiplicative noise etcs. However, one must note that denoising
in non-Gaussian noise is a research by its own domain. For
instance, hand-crafted solution is essential such as Gaussianizing
the Poisson measurements as indicated by Luisier, Blu, and Unser
(2011). In this case, the VESC would require a new dictionary learn-
ing method as to Ma, Moisan, Yu, and Zeng (2013) to perform well
in the non-Gaussian noise. However, the aim of the paper is to
show how Benoît et al. (2011) – a spatial domain, image denoising
approach could be extended to video denoising approach, in a uni-
fied framework. That is, how to learn an epitome and a KSVD dic-
tionary for entire video clip to perform denoising, and hence
denoising in the non-Gaussian noise will be considered as our
future work. Also, worth to mention that most of the solutions in
the non-Gaussian noise are in the transform domain, while the
VESC is in the spatial domain therefore the extension is not direct.

5. Conclusion

This paper presented a compact representation for a video
denoising system, using the epitomic-based dictionary learning
structure. In specific, we use the video epitome to build the com-
pact representation on noisy video, and learn the KSVD dictionary
from the video epitome to denoise the noisy video. The proposed
method is designed for the AGWN noise, and is a spatial domain
solution. In overall, the proposed method shows convincing results
over the baseline methods, as well as the state-of-the-art methods
that within the spatial domain. Besides, the proposed method
manage to reduce the computational cost on video denoising com-
pare to the most related method (Benoît et al., 2011), that require
to denoise based on frame-by-frame basis. However, the proposed
method has a limitation to work on the non-Gaussian noise. As an
example in the Poisson noise, our current solution will have signif-
icant information lose on the background information.

One of the future works will consist of improving the efficiency
of the algorithms with an introductory of multiple epitomes exten-
sion. Besides that, we will test our algorithm in different test
sequences with different complexity, as well as higher range of
r. On top of that, it will be interesting to extend the current frame-
work to non-Gaussian noise e.g. impulse noise, Poisson noise and
multiplicative noise. Finally, as shown in the experiment where a
good denoising solution will enhance the performance of subse-
quent processes; therefore, we are also interested to investigate
how denoising methods can enhance subsequent processes such
as compression, segmentation, object recognition and detection.
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