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Abstract. Classification of plants based on a multi-organ approach is
very challenging due to the variability in shape and appearance in plant
organs. Despite promising solutions built using convolutional neural net-
work (CNN) for plant classification, the existing approaches do not con-
sider the correspondence between different views captured of a plant. In
fact, botanists usually observe and study simultaneously a plant from
different vintage points, as a whole and also analyse different organs in
order to disambiguate species. Driven by this insight, we introduce a
new framework for plant structural learning using the recurrent neural
network (RNN) approach. This novel approach supports classification
based on a varying number of plant views composed of one or more
organs of a plant, by optimizing the dependencies between them. We
also present the qualitative results of our proposed models by visual-
izing the learned attention maps. To our knowledge, this is the first
study to venture into such dependencies modeling and interpret the re-
spective neural net for plant classification. Finally, we show that our
proposed method outperforms the conventional CNN approach on the
PlantClef2015 benchmark. The source code and models are available at
https://github.com/cs-chan/Deep-Plant.

Keywords: Plant classification · Deep learning · Recurrent neural net-
work.

1 Introduction

Plants are the backbone of all life on earth providing us with food and oxygen. A
good understanding of plants is essential to help in identifying new or rare plant
species in order to improve the drug industry, balance the ecosystem as well
as the agricultural productivity and sustainability. Ever since LifeCLEF, one
of the foremost visual image retrieval campaigns hosted a plant identification
challenge, researchers have started to focus on automatic analysis of multiple
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Fig. 1: (a) and (b) represent examples of plant images taken from the plants
tagged with ObservationID 14982 and 6840 respectively in PlantClef2015 dataset
[15]. Different plant views captured of a plant exhibit correlated characteristic
in their organ structures. Best viewed in color.

images exploiting different views of a plant capturing one or more organs. From
year 2014, it has provided up to seven different plant views which are entire
plant, branches, flower, leaf, leaf scan, fruit, and stem. Indeed, [14] has shown
that combining different types of views in a query can increase the species iden-
tification rate. Previously, researchers [14, 20] consider that different images are
independent from each other. A straightforward fusion scheme such as the mean
of the categorical distributions predicted for each image is generally employed to
combine the information contained in each image. However, in reality, different
views are far from being independent because they correspond to multiple views
of the same individual specimen. For example, as shown in Fig. 1, different plant
views (or organs) captured of a plant exhibit correlated or overlapping character-
istics in their organ structures, nonetheless these traits are distinctive between
different plants. This information inevitably can be seen as one of the important
cue to help differentiate species. Majority studies have used CNN to classify
plant images [18, 21]. This approach however was designed to capture similar
region-wise patterns within an image, thus disregarding the correlation between
different plant views of a plant. In this work, we propose a new framework based
on RNN [12] to model the dependencies between different plant views where the
probability of a view is conditioned by the other views. Specifically, it takes in
a varying number of plant view images composed of one or more organs, and
optimizes the dependencies between them for species classification. Additionally,
we introduce a Coarse-to-Fined Attention (CFA) module where it can locate the
local regions that are highly voted by the RNN method in each plant view. Our
contributions are summarized as follows:



1. We propose a RNN based approach to model different plant views capturing
one or more organs of plant for species classification.

2. We introduce a CFA module that provides a better visual understanding on
the local features emphasized by the RNN method in plant views dependen-
cies modeling.

3. Our proposed model achieves a better performance compared to the conven-
tional CNN approach on PlantClef2015 benchmark.

2 Related works

Plant identification. Over the past few years, researchers have worked on rec-
ognizing plant species using solely a single plant organ. A majority of the studies
have utilized leaves to identify species. Leaf characters such as shape, texture,
and venation are the most generally used features to distinguish leaves of differ-
ent species [18]. To fit better with a real scenario where people generally try to
identify a plant by observing several plant organs or a similar organ from different
viewpoints, researchers in computer vision have focused on designing an auto-
mated plant classification system to identify multi-organ plant images. Earliest
attempts [27, 33, 11] in general, adopt organ-specific features for discrimination.
Specifically, they first group the images of plants into their respective organ cate-
gories. Then, based on each organ category, organ-specific features are extracted
using feature engineering approaches. Ever since, DL has been proved extremely
high recognition capabilities in dealing with very large datasets, [10] proposed
using an end-to-end CNN to replace those hand-crafted feature extractors. They
introduced organ-specific CNN models where each model is trained on dedicated
plant organs. There are also researchers [24, 6] focused on using CNN to learn
generic features of plants, irrespective of their organ information. Lately, [21]
showed that using the HGO-CNN which incorporates both the organ-specific
and generic features could provide the best result in the LifeClef2015 challenge.
Despite promising results obtained using CNN based approach, the representa-
tion learned focuses only on the information contained in each image, but fails to
capture the high-level semantics corresponding to the interaction between differ-
ent plant views (organs). Henceforth, this work moves beyond existing practice,
venturing into a new alternative to solve this problem.

RNN based classification. The RNN has always been used to process se-
quential data such as language translation [17, 30] and action recognition [22,
29]. Lately, CNN and RNN have been employed to combine information, inte-
grating the domain of computer vision and natural language processing [28, 9, 34,
32, 31]. Despite using RNN to model complex structures of video or language,
a few publications have showed the capability of RNN in processing variable
length of fixed-sized data in a sequential manner though data originally is not in
a form of sequences. For example, it has been actively explored in segmentation
[23, 25], scene labeling [4, 26], object recognition [2, 3] as well as image genera-
tion [13]. In such case, RNN is used to model the dependencies between pixels
or regions within an image. In our work, we formulate RNN to the contrary, to



learn the structure of an object based on its different views which do not have a
form of sequences. We introduce a probabilistic model to process different plant
views captured of a plant where each state variable is conditioned upon all other
states, and not only its previous ones.

3 Approach

Notations We denote the plant view images as It ∈ {I1, I2, · · · , IT} where
t = 1, · · · , T are the states corresponding to the indices of plant view images of
the same plant. Each It is associated with a species annotation (It, rt) where
rt is a one hot vector with only the species label set as positive. For each
plant view image, we extract its convolutional features from a CNN model,
δt ∈ {δ1, δ2, · · · , δT }, δt ∈ RH×W×C where H,W and C are the height, width
and number of channels of feature maps.

Architecture It is known that human brain processes information iteratively,
where it keeps the current state in an internal memory and uses it to infer fu-
ture observation, capturing the potential relationships between them [8]. Driven
by this insight, we build a new plant classification framework upon the RNN
based approach, which can hold and relate different structural information of a
plant. Moreover, it is versatile to an arbitrary number of plant images. In this
work, the Gated Recurrent Unit (GRU) [7], one of the gating mechanism in
RNNs, is adopted for a more light-weight and simple network structure. The
activation ht is a linear interpolation between the previous activation ht−1
and the current candidate activation h̃t: ht = (1 − zt)ht−1 + zth̃t where zt
is the update gate that decides how much of the previous state should be kept
around. The zt is computed as zt = σ(Wz1xt + Wz2ht−1). The candidate acti-
vation h̃t which is processed with a hyperbolic tangent is formulated as follows:
h̃t = tanh(Wh1xt+Wh2(vt�ht−1)) where vt is the reset gate that determines
to which extent the new input should be combined with the previous state and
� is an element-wise multiplication operator. The vt is formulated as follows:
vt = σ(Wv1xt + Wv2ht−1). The activations of both gates are element-wise
logistic sigmoid functions σ. It maps vt and zt in between 0 to 1. All the W
matrices are trained parameters. The network is fed by the current input vector
xt, while all the W matrices are trained parameters.

Attention (attn) The attention module is used to reduce the dimensionality
of convolutional features in order to ease the computational burden of a network
[5]. The attention map λt controls the contribution of convolutional features
at the t-th state. Larger value in λt indicates higher importance. The term εt
introduced as the weighted average of convolutional features that is dependent
on the previous activation ht−1 and convolutional features δt. The attention
function g : δt,ht−1 → εt is defined as follows:

ζt = {tanh(δtWδ + ht−1Wh)}Wa (1)

λt = softmax(ζt) (2)



Fig. 2: The proposed Coarse-to-Fined Attention module. Best viewed in color.

εt =
∑
i,j

λt,ijδt,ij (3)

where the embedding matrices Wδ ∈ RC×C , Wh ∈ RE×C , Wa ∈ Rp×1, E is the
dimensionality of GRU cell, p = H ×W and δt,ij denotes convolutional feature
at location (i, j) ∈ p.

Coarse-to-Fined Attention (CFA) Using the aforementioned attention mech-
anism (Eq. 1-3), the GRU decodes species prediction based on global image fea-
tures attained from a CNN. The attention mechanism trained by such global
image features might not be able to infer the discriminative local features of
plant structures. To gain a better visual understanding on which part of a plant
view image is mostly emphasized by the RNN based approach, a better local-
ization of the attention map is inevitably necessary. To this end, we refine the
attention map acquired in each state t by proposing CFA module as shown in
Fig. 2. Basically, the convolutional feature δt is first processed to obtain a coarse
attention map λct . The λct is then element-wise multiplied with the δt to pro-
duced a masked convolutional feature δ̂t which is to be fed to the following
GRU. The attention mechanism at the later stage is therefore trained to look
for pertinent features from this refined image feature δ̂t and identify the best
local features. With the use of the refined attention map produced as λrt , we can
eventually locate these local features in each plant view.

Training Contrary to modeling video or language data where variable number
of inputs are conditioned upon their previous states P (rt|It, r1, · · · , rt−1), in our
case, it is logical to condition the inputs upon all other states information for
the plant structural modeling, P (rt|It, {rd}d6=t). The reason is that, states in our
context are analogous to the collections of different plant views captured from a
similar plant, so the relationships between these states are interrelated. Hence-
forth, to tackle this challenge, we design in such a way that it would be able to
iteratively classify images of a plant while conjointly operate on all of its related
instances. In particular, we build a bidirectional states modeling mechanism

where the forward neuron activations
−→
h models Pfw = P (rt|It, r1, · · · , rt−1)

and the backward neuron activations
←−
h models Pbw = P (rt|It, rt+1, · · · , rT ).



Then, we put in correspondence between both neurons for every state and
train them upon the respective species classes. In this manner, each state t
can be considered as condition upon the collections of the related plant im-
ages from states 1, · · · , t − 1, t + 1, · · · , T . In order to correlate between both
states, the output activations of the forward and backward GRU are cascaded

as follows: ht = [
−→
h t,
←−
h t]. Then, we multiply ht with a class embedding matrix,

Wem, which is s(It) = Wemht before normalizing it with a softmax function:

P (rt|It, {rd}d 6=t) = esr(It)∑M
m=1 esm(It)

where M and r stand for the total number of

classes and the target class respectively. We perform the softmax operation for
every state t preceding the computation of the overall cross entropy function:
Lpsn = 1

T

∑T
t=1 Lt, where Lt = −logP (rt|It, {rd}d6=t).

4 Datasets and Evaluation metrics

Dataset. The PlantClef2015 dataset [15] was used. It has 1000 plant species
classes. Training and testing data comprise 91759 and 21446 images respectively.
Each image is associated with a single organ type (branch, entire, flower, fruit,
leaf, stem or leaf scan).

Evaluation metrics. We employ the observation and image-centered scores
[15] to evaluate the model’s performance. The purpose of the observation score
is to evaluate the ability of a model to predict the correct species labels for all the
users. To this end, the observation score is the mean of the average classification
rate per user as defined: Sobs = 1

U

∑U
u=1

1
Pu

∑Pu

p=1 Su,p where U represents the
number of users, Pu is the number of individual plants observed by the u-th user,
and Su,p is the score between 0 and 1 as the inverse of the rank of the correct
species (for the p-th plant observed by the u-th user). Each query observation is
composed of multiple images. To compute Su,p, we adopt the Borda count (BD)
to combine the scores of multiple images: BD = 1

n

∑n
k=1 scorek where n is the

total number of images per query observation and score is the softmax output
score, which describes the ranking of the species.

Next, the image-centered score evaluates the ability of a system to pro-
vide the correct species labels based on a single plant observation. It calcu-
lates the average classification rate for each individual plant defined as: Simg =
1
U

∑U
u=1

1
Pu

∑Pu

p=1
1

Nu,p

∑Nu,p

n=1 Su,p,n where U and Pu are explained earlier in the

text, Nu,p is the number of pictures taken from the p-th plant observed by the
u-th user and Su,p,n is the score between 0 and 1 equal to the inverse of the rank
of the correct species (for the n-th picture taken from the p-th plant observed by
the u-th user). We compute the rank of the correct species based on its softmax
scores. Besides Sobs and Simg, we also compute the top-1 classification result to
infer the robustness of the system: Acc = Tr/Ts where Tr is the number of true
species prediction and Ts represents total number of testing data.



Table 1: Performance comparison between the E-CNN [20] and the GRU archi-
tecture.

Method Acc Simg Sobs

E-CNN [19, 20] 0.635 0.710 0.737

GRU (conv7) + attn 0.669 0.709 0.718
GRU (conv5 3) + CFA 0.662 0.711 0.723
GRU (conv5 3) + attn 0.686 0.718 0.726

5 Experiments

We firstly group the training and testing images into their respective observation
ID. Note that, each observation ID consists of T number of plant images cap-
tured from a p-th plant observed by a u-th user. By doing so, we have 27907 and
13887 observation IDs for training and testing respectively. Next, we apply the
multi-scale image generation process proposed in [19] on these images. For each
plant image, we extract its image representation using the enhanced HGO-CNN
(E-CNN) [19, 20]. We train the architecture based on random sequence, disre-
garding the order of the plant images fed into the network. This is driven by our
understanding that botanists usually observe and study a plant from different
vintage points simultaneously, as a whole and also analyse different organs, and
this is done without specific order. We test the performance of GRU architec-
ture using different levels of image abstraction representation. We use conv5 3
and conv7 features extracted from the last convolutional layer of generic and
species layer of E-CNN [20] respectively. The GRU architecture is trained using
the Tensorflow library [1]. We use the ADAM optimizer [16] with the parame-
ters α = 1e − 08, β1 = 0.9 and β2 = 0.999. We applied L2 weight decay with
penalty multiplier set to 1 ×10−4, and dropout ratio set to 0.5, respectively. We
set the learning rate to 1 ×10−3, and, reduce it to 1 ×10−4 when the training
performance stops improving. Mini-batch size is set to 15.

5.1 Performance Evaluation

In Table 1, we compare the performance of the GRU architecture with the E-
CNN baseline [19, 20]. It can be seen that using the GRU with conv5 3 input
layer, achieved the highest top-1 accuracy of 0.686, outperforms the previous
E-CNN [19, 20]. However, we found that its Simg and Sobs do not seem to have
much improvement. We then explore the cause and observe that most of the
misclassifications occur when there is only one testing image per observation ID.
Table 2 shows that there is a total of 9905 testing images that fall in category
A, which is nearly 47% of the testing set. The GRU performs noticeably better
in category B than A (top-1 accuracy of 0.754 compared to 0.607), while E-
CNN [19, 20] performs almost equally in all cases for category A and B (top-1
accuracy of 0.634 and 0.637). This can be deduced from the characteristic of
both E-CNN and GRU based models used in this context. To recognize a plant



Table 2: Comparison of top-1 classification accuracy for different categories of
observation ID. Note that, Category A = a single image per observation ID;
Category B = number of images ≥ 2 per observation ID

Category A B

Total number of training images for each category 11690 80069

Total number of testing images for each category 9905 11541

E-CNN [19, 20] 0.634 0.637
GRU (conv5 3) + attn 0.607 0.754

Table 3: Classification performance comparison of each content based on Simg.
Method Branch Entire Flower Fruit Leaf LeafScan Stem

E-CNN [19, 20] 0.564 0.573 0.801 0.657 0.666 0.759 0.384
GRU (conv5 3) + attn 0.650 0.643 0.823 0.709 0.729 0.790 0.546

Gain (%) +15.2 +12.2 +2.7 +7.9 +9.5 +4.1 +42.2

image, the E-CNN based model is trained to find similar patterns on all different
subfields of an image, while the GRU based model is trained to look for higher
level features, modeling the dependencies between a series of images. Next, we
noticed that the number of training samples in category A is significantly less
than category B. Such imbalanced training set might be another factor that
affects the performance of the GRU in predicting species for category A. Based
on these findings, we therefore deduce that the poor performance of the GRU
based model is most likely due to the inadequate samples of plants given one
observation ID. Besides, we found that using GRU + CFA module, the Simg and
Sobs are 0.711 and 0.723 respectively, which are comparable to the attn module
but the top-1 accuracy on the other hand is only 0.662. This is probably due to
the absence of global information when the network is explicitly forced to focus
on local regions of plant structures. Moreover, using the GRU with the conv5 3
as the input layer is proven to be better compared to the conv7. We attribute
this performance difference to conv5 3 features being more generic compared
to conv7, as we note that there is a transition from generic to class specific
features within the CNNs. Hence, the generic features are more versatile when
re-purposed for a new task. Additionally, training the GRU with generic features
does not make any explicit use of the organ tags, which inevitably reduces the
complexity in model training.

5.2 Detailed Scores for Each Plant Organ

In this section, we analyse the classification performance for each of the organ
based on the image-centered score, Simg. We observe that the GRU model essen-
tially improved the recognition performance of each organ, especially the ‘stem’
organ. As shown in Table 3, the improvement gained is 42.2% which is consider-
ably significant compared to other organs. This is due to the fact that the stem
organ has the least number of images in category A compared to other organs.



Table 4: Percentage of testing images that fall under category A for each organ
category (%)

Branch Entire Flower Fruit Leaf LeafScan Stem

56.49 68.17 64.81 50.98 33.59 64.23 25.77

That is the majority of stem images co-exists with other plant images in one
observation ID. For this reason, we can see that although the stem organ is con-
sidered as the least informative one compared to other organs, using the RNN
method, we can successfully boost its classification performance. Besides, note
that, although improvement gained for the ‘flower’ is not as high as the ‘stem’
organ, its performance is the highest for the overall plant views. This shows that
flower is the most effective organ to identify plant species.

5.3 Qualitative Analysis

Contrary to CNN, RNN learns the high-level structural features of a plant by
modeling the dependencies between different plant views. Besides quantitative
analysis, we go deeper into exploring, analyzing and understanding the learned
features by using both, the attn and the CFA modules. Fig. 3 shows the visu-
alisation results of the GRU(conv5 3) + attn and the GRU(conv5 3) + CFA.
It is noticed that, using the attn module, the highly activated regions mostly
fall on the holistic plant structures. Hence, we deduce that the GRU(conv5 3)
+ attn is able to locate the pertinent foreground regions that are analogous to
the plant structures. On the other hand, using the CFA module to recurrently
refine the attention regions can precisely locate the discriminative local regions
of plant structures, which are voted the most by the RNN method. Based on the
visualisation results in Fig. 3, we can notice that the refined features are focused
on the boundary of the flower’s petals as well as the center of the compound
leaflets, radiating from the tip of the petiole. This shows that the CFA can pro-
vide more localized attention that emphasizes the most distinctive local regions
rather than the holistic plant structures. These insights therefore provide us with
a better visual understanding from the global to the local perspective of image
representation learned through the RNN in modeling plant views correlation.

6 Conclusion

We presented a novel plant classification framework based on RNN approach
where it supports classification based on a varying number of plant views com-
posed of one or more organs of a plant, by optimizing the dependencies between
them. Experiments on the PlantClef 2015 benchmark showed that modeling the
higher level features of plant views interaction can essentially improve the classifi-
cation performance, especially for the less distinctive ‘stem’ organ. Furthermore,
with the help of the proposed CFA module, we can achieve better insights of the
discriminative subparts of the plant structures which are voted the most by the
RNN approach for species classification.
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Fig. 3: Visualisation of the activation maps generated by the GRU(conv5 3) +
attn and GRU(conv5 3) + CFA for plant samples tagged with observation ID
(a)10829 and (b) 35682 in PlantCLef 2015 dataset. It can be seen that the
CFA module can refine the attention regions to locate the most distinctive local
regions rather than the holistic plant structures. Best viewed in color.



References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: OSDI. vol. 16, pp. 265–283 (2016)

2. Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual atten-
tion. arXiv preprint arXiv:1412.7755 (2014)

3. Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R.: Inside-outside net: Detecting
objects in context with skip pooling and recurrent neural networks. In: CVPR. pp.
2874–2883 (2016)

4. Byeon, W., Breuel, T.M., Raue, F., Liwicki, M.: Scene labeling with lstm recurrent
neural networks. In: CVPR. pp. 3547–3555 (2015)

5. Cho, K., Courville, A., Bengio, Y.: Describing multimedia content using attention-
based encoder-decoder networks. IEEE Transactions on Multimedia 17(11), 1875–
1886 (2015)

6. Choi, S.: Plant identification with deep convolutional neural network: Snumedinfo
at lifeclef plant identification task 2015. In: CLEF (Working Notes) (2015)

7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

8. Clark, A.: Whatever next? predictive brains, situated agents, and the future of
cognitive science. Behavioral and Brain Sciences 36(3), 181–204 (2013)

9. Fu, K., Jin, J., Cui, R., Sha, F., Zhang, C.: Aligning where to see and what to tell:
image captioning with region-based attention and scene-specific contexts. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39(12), 2321–2334
(2017)

10. Ge, Z., McCool, C., Sanderson, C., Corke, P.: Content specific feature learning for
fine-grained plant classification. In: CLEF (Working Notes) (2015)
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