
Supplementary Material:
Improved ArtGAN for Conditional Synthesis of

Natural Image and Artwork

August 23, 2018

Abstract

This supplementary file provides additional details which are not covered in
the submission due to the page limit. First, list of classes in Wikiart dataset is
provided. Next, we present the pseudocode that is used to train the ArtGAN. Then,
we list the detailed model configurations of the Generator and Discriminator used
in our work to facilitate future reimplementation of our work. Finally, we show
more qualitative results for experiments on Wikiart, CIFAR-10, STL-10, CUB-
200, and Oxford-102 datasets. Codes are available at https://github.com/
cs-chan/ArtGAN.

1 Wikiart Dataset
Table 1 details the members in each of the annotation class in the Wikiart dataset.

List of Members

Style

(1) Abstract Expressionism (2) Action Painting (3) Analytical Cubism
(4) Art Nouveau-Modern Art (5) Baroque (6) Colour Field Painting
(7) Contemporary Realism (8) Cubism (9) Early Renaissance
(10) Expressionism (11) Fauvism (12) High Renaissance
(13) Impressionism (14) Mannerism-Late-Renaissance (15) Minimalism
(16) Primitivism-Naive Art (17)New Realism (18) Northern Renaissance
(19) Pointillism (20) Pop Art (21) Post Impressionism
(22) Realism (23) Rococo (24) Romanticism
(25) Symbolism (26) Synthetic Cubism (27) Ukiyo-e

Genre

(1) Abstract Painting (2) Cityscape (3) Genre Painting
(4) Illustration (5) Landscape (6) Nude Painting
(7) Portrait (8) Religious Painting (9) Sketch and Study
(10) Still Life

Artist

(1) Albrecht Durer (2) Boris Kustodiev (3) Camille Pissarro
(4) Childe Hassam (5) Claude Monet (6) Edgar Degas
(7) Eugene Boudin (8) Gustave Dore (9) Ilya Repin
(10) Ivan Aivazovsky (11) Ivan Shishkin (12) John Singer Sargent
(13) Marc Chagall (14) Martiros Saryan (15) Nicholas Roerich
(16) Pablo Picasso (17) Paul Cezanne (18) Pierre-Auguste Renoir
(19) Pyotr Konchalovsky (20) Raphael Kirchner (21) Rembrandt
(22) Salvador Dali (23) Vincent van Gogh

Table 1: List of Style, Genre, and Artist in the Wikiart Dataset

1

https://github.com/cs-chan/ArtGAN
https://github.com/cs-chan/ArtGAN

2 Algorithm
Algorithm 1 illustrates the training process in our ArtGAN models. The notations are
consistent with the submission. In addition, we denote K = {1, . . . ,K} as the set of
indices of the classes. Then, the one-hot vector of a sample c̄k is randomly sampled,
where k ∈ K and value at position k is set to one while the rest of the elements are set
to zero. Given n samples in a minibatch, y = {y1, . . . , yn} is a vector of the computed
adversarial outputs. While, C = {c1, . . . , cn} is a set of class prediction.

Algorithm 1 Pseudocode for training ArtGAN

Require: Minibatch size, n, learning rate, λ, and z vector size, d
Require: Randomly initialize θD and θG

1: while condition not met do
2: Sample Z = [z1, . . . , zn] ∼ N (0, 1)n×d

3: Randomly set C̄ = [c̄k1 , . . . , c̄kn]

4: Sample minibatch X̂ = [x̂1, . . . , x̂n]

5: C,y = D(X̂)
6: X̄ = G(Z, C̄)
7: C′,y′ = D(X̄)
8: if use magnified learning then
9: R = Dec(Φ(X̂))

10: R′ = Dec(Φ(X̄))
11: θD = θD − λ∂LDae

∂θD
, LDae ← y,C, C̄,C′,y′,R

12: θG = θG − λ∂LGae

∂θG
, LGae ← C̄,C′,y′,R′

13: else
14: θD = θD − λ∂LD

∂θD
, LD ← y,C, C̄,C′,y′

15: θG = θG − λ∂LG

∂θG
, LG ← C̄,C′,y′

16: end if
17: end while

3 Network Architectures
This section describes the network architectures used in our experiments. All models
used the same denoiser in ArtGAN-DFM, which has the same architecture as Warde et
al. [1] by using a Gaussian noise on the inputs, followed by 10 fully connected layers
(with nfm = 1024 for all intermediate layers). When categorical autoencoder-based
discriminator is used, the input of the decoder (or denoiser) is the output of the last
convolutional layer of the classifier, that is the second last layer of the classifier. The
annotations are as follow:

1. conv(nfm, k, s): convolution operation with nfm feature maps, k kernel size,
and stride of s, followed by a leaky ReLU with the parameter in negative slope
set to 0.2.

2. convBN(nfm, k, s): same as conv(nfm, k, s) except with Batch Normalization
between the convolution operation and leaky ReLU.

3. NNupsample(S): Nearest neighbour upsampling with upscale size of S.

2

4. fc(nfm): fully connected layer with nfm feature maps, followed by a leaky
ReLU with the parameter in negative slope set to 0.2.

5. fcBN(nfm): same as fc(nfm) but with Batch Normalization between the fully
connected layer and leaky ReLU.

6. Dropout(γ): dropout with 100× γ% of the neurons dropped.

3.1 CIFAR-10
This section describes the network architectures used on CIFAR-10. Table 2 shows the
architecture for the discriminator. Table 3 shows the architectures for the generators.

Table 2: Network architectures of the discriminator used on CIFAR-10, which contains
a classifier and a decoder.

Classifier Decoder
conv(96, 3, 1) convBN(256, 3, 1)

convBN(96, 3, 2)
Dropout(0.2)

convBN(192, 3, 1) NNupsample(16)
convBN(192, 3, 2) convBN(128, 3, 1)

Dropout(0.2) convBN(128, 3, 1)
convBN(256, 3, 1) NNupsample(32)
convBN(256, 1, 1) convBN(64, 3, 1)
convBN(512, 1, 1) conv(3, 3, 1)

fc(10)

Table 3: Network architectures for the generators (with and without magnified learn-
ing) used on CIFAR-10.

Generator Generator with Magnified Learning
fcBN(512× 4× 4) fcBN(512× 4× 4)

NNupsample(8) NNupsample(8)
convBN(256, 3, 1) convBN(256, 3, 1)
NNupsample(16) NNupsample(16)

convBN(128, 3, 1) convBN(128, 3, 1)
convBN(128, 3, 1) convBN(128, 3, 1)
NNupsample(32) NNupsample(32)
convBN(64, 3, 1) convBN(64, 3, 1)
convBN(3, 3, 1) convBN(64, 3, 1)

NNupsample(64)
convBN(32, 3, 1)

conv(3, 3, 1)

3

3.2 STL-10
Table 4 and Table 5 show the network architectures of the discriminator and generator
used on STL-10.

Table 4: Network architectures for discriminator (containing a classifier and a decoder)
used on STL-10.

Classifier Decoder
conv(64, 3, 1) convBN(512, 3, 1)

convBN(64, 3, 2)
Dropout(0.2)

convBN(128, 3, 1) NNupsample(16)
convBN(128, 3, 2) convBN(256, 3, 1)

Dropout(0.2)
convBN(256, 3, 1) NNupsample(32)
convBN(256, 3, 2) convBN(128, 3, 1)

Dropout(0.2) convBN(128, 3, 1)
convBN(512, 3, 1) NNupsample(64)
convBN(512, 3, 1) convBN(64, 3, 1)

conv(3, 3, 1)
fc(10)

Table 5: Network architectures for the generators (with and without magnified learn-
ing) used on STL-10.

Generator Generator with Magnified Learning
fcBN(512× 4× 4) fcBN(512× 4× 4)

NNupsample(8) NNupsample(8)
convBN(512, 3, 1) convBN(512, 3, 1)
NNupsample(16) NNupsample(16)

convBN(256, 3, 1) convBN(256, 3, 1)
NNupsample(32) NNupsample(32)

convBN(128, 3, 1) convBN(128, 3, 1)
convBN(128, 3, 1) convBN(128, 3, 1)
NNupsample(64) NNupsample(64
convBN(64, 3, 1) convBN(64, 3, 1)
convBN(3, 3, 1) convBN(64, 3, 1)

NNupsample(128)
convBN(32, 3, 1)

conv(3, 3, 1)

4

3.3 Wikiart
All tasks in Wikiart (i.e. genres, styles, and artists) used the same architectures de-
scribed in Table 6 and Table 7.

Table 6: Network architectures for discriminator (containing a classifier and a decoder)
used on Wikiart.

Classifier Decoder
conv(128, 3, 2) convBN(512, 3, 1)
Dropout(0.2)

convBN(256, 3, 2) NNupsample(8)
Dropout(0.2) convBN(256, 3, 1)

convBN(512, 3, 2) NNupsample(16)
convBN(512, 3, 1) convBN(128, 3, 1)

Dropout(0.2)
convBN(1024, 3, 2) NNupsample(32)

convBN(64, 3, 1)
fc(10) NNupsample(64)

convBN(32, 3, 1)
conv(3, 3, 1)

Table 7: Network architectures for the generators (with and without magnified learn-
ing) used on Wikiart.

Generator Generator with Magnified Learning
fcBN(512× 4× 4) fcBN(512× 4× 4)

NNupsample(8) NNupsample(8)
convBN(512, 3, 1) convBN(512, 3, 1)
NNupsample(16) NNupsample(16)

convBN(256, 3, 1) convBN(256, 3, 1)
NNupsample(32) NNupsample(32)

convBN(128, 3, 1) convBN(128, 3, 1)
NNupsample(64) NNupsample(64
convBN(64, 3, 1) convBN(64, 3, 1)
convBN(3, 3, 1) convBN(64, 3, 1)

NNupsample(128)
convBN(32, 3, 1)

conv(3, 3, 1)

5

3.4 Oxford-102 flowers and CUB-200 birds
Oxford-102 and CUB-200 datasets share the same network architectures as described
in Table 8 and Table 9.

Table 8: Network architectures for discriminator (containing a classifier and a decoder)
used on Oxford-102 and CUB-200.

Classifier Decoder
conv(64, 3, 2) convBN(512, 3, 1)
Dropout(0.2)

convBN(128, 3, 2) NNupsample(8)
Dropout(0.2) convBN(256, 3, 1)

convBN(256, 3, 2) NNupsample(16)
convBN(256, 3, 1) convBN(128, 3, 1)

Dropout(0.2)
convBN(512, 3, 2) NNupsample(32)
convBN(512, 3, 1) convBN(64, 3, 1)

fc(K) NNupsample(64)
conv(32, 3, 1)
conv(3, 3, 1)

Table 9: Network architectures for the generators (with and without magnified learn-
ing) used on Oxford-102 and CUB-200.

Generator Generator with Magnified Learning
fcBN(512× 4× 4) fcBN(512× 4× 4)

NNupsample(8) NNupsample(8)
convBN(512, 3, 1) convBN(512, 3, 1)
NNupsample(16) NNupsample(16)

convBN(256, 3, 1) convBN(256, 3, 1)
NNupsample(32) NNupsample(32)

convBN(128, 3, 1) convBN(128, 3, 1)
NNupsample(64) NNupsample(64
convBN(64, 3, 1) convBN(64, 3, 1)
convBN(3, 3, 1) convBN(64, 3, 1)

NNupsample(128)
convBN(32, 3, 1)

conv(3, 3, 1)

6

4 More generated samples

4.1 Wikiart
More generated fine-art paintings are visualized in Figure 1, Figure 2, and Figure 3 at
high resolution (128× 128 pixels).

Figure 1: Generated genres images at 128× 128 pixels. From top to bottom: (1)
Abstract painting, (2) Cityscape, (3) Genre painting, (4) Illustration, (5) Landscape,
(6) Nude painting, (7) Portrait, (8) Religious painting, (9) Sketch and study, (10) Still
life.

7

Figure 2: Generated artists images at 128× 128 pixels. (Left) From top to bottom:
(1) Albrecht Durer, (2) Boris Kustodiev, (3) Camille Pissarro, (4) Childe Hassam , (5)
Claude Monet, (6) Edgar Degas, (7) Eugene Boudin, (8) Gustave Dore, (9) Ilya Repin,
(10) Ivan Aivazovsky, (11) Ivan Shishkin, (12) John Singer Sargent. (Right) From top
to bottom: (13) Marc Chagall, (14) Martiros Saryan, (15) Nicholas Roerich, (16) Pablo
Picasso, (17) Paul Cezanne, (18) Pierre Auguste Renoir, (19) Pyotr Konchalovsky, (20)
Raphael Kirchner, (21) Rembrandt, (22) Salvador Dali, (23) Vincent van Gogh.

8

Figure 3: Generated styles images at 128× 128 pixels. (Left) From top to bottom:
(1) Abstract Expressionism, (2) Action painting, (3) Analytical Cubism, (4) Art Nou-
veau, (5) Baroque, (6) Color Field Painting, (7) Contemporary Realism, (8) Cubism,
(9) Early Renaissance. (Middle) From top to bottom: (10) Expressionism, (11) Fau-
vism, (12) High Renaissance, (13) Impressionism, (14) Mannerism Late Renaissance,
(15) Minimalism, (16) Naive Art Primitivism, (17) New Realism, (18) Northern Re-
naissance. (Right) From top to bottom: (19) Pointillism, (20) Pop Art, (21) Post
Impressionism, (22) Realism, (23) Rococo, (24) Romanticism, (25) Symbolism, (26)
Synthetic Cubism, (27) Ukiyo-e.

9

4.2 CIFAR-10
Figure 4 shows generated images at 64× 64 resolution trained on CIFAR-10.

Figure 4: Generated CIFAR-10 images at 64× 64 pixels. From top to bottom: (1)
Airplane, (2) Automobile, (3) Bird, (4) Cat, (5) Deer, (6) Dog, (7) Frog, (8) Horse, (9)
Ship, (10) Truck.

10

4.3 STL-10
Figure 5 shows generated images at resolution of 128× 128 pixels trained on STL-10.

Figure 5: Generated STL-10 images at 128× 128 pixels. From top to bottom: (1)
Airplane, (2) Bird, (3) Car, (4) Cat, (5) Deer, (6) Dog, (7) Horse, (8) Monkey, (9) Ship,
(10) Truck.

11

4.4 CUB-200 birds
Figure 6 shows more generated CUB-200 images. Each sample represents one of the
200 bird species.

Figure 6: More generated images on CUB-200 birds at 128× 128 pixels.

12

4.5 Oxford-102 flowers
Figure 7 shows more generated flower images on Oxford-102 at high resolution (128×
128 pixels). Each sample represents one flowers species, with a total of 102 types of
flowers generated.

Figure 7: More generated images on Oxford-102 flowers at 128× 128 pixels.

References
[1] D. Warde-Farley and Y. Bengio, “Improving generative adversarial networks with denoising

feature matching,” in International Conference on Learning Representations, 2017. 2

13

