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¢ Conventional treats sentence as sequence of words, and disregard all other linguistic syntax and structure a sentence
should have. 1) Design a phrase-based model for image
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O “language structure involving, in some form or other, a phrase structure hierarchy, or immediate constituent organization” captioning.
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¢ Characteristic of image descriptions: Random negative samples x H Random negative samples x H
i i [ The man in the gray shirt and sandals is pulling the large tricycle ] . - .
+ Consists of mostly noun phrases (NP), linked [ slectve dependencyparsig O Phrase selection objective — train the model for recognizing probable NP inputs
with verb and preposmonal phrases. det(man, the) amod(shirt, gray) amod(tricycle, large) b' . .
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+ Each NP is strongly image relevant. etls 'r@ e) — de“t;'cyc'e' the) Objective Function: .
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0 Dependency parsing (Stanford CoreNLP tool) : , . ;
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vector generation embedding over words O Words discarded: occurrence < 5 times (Flickr8k) / 8 times (Flickr30k)
¢ Sentence = sequence of noun phrases and words. O Optimizer: RMSprop (minibatch size = 100)
O A ‘phrase’ token is added into the corpus
Quantitative results (BLEU): Analysis on corpus (Flickr8k): Phrases generated:
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BLEU score variation ¢ phi-LSTM is able to generate sentence formed with more variety of words. N Y . =
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Sentence generated:

Images
phi-LSTM: Three people are standing in A skateboarder does a trick on Three dogs play in a grassy A cowboy is riding a horse. A person in a helmet is riding a A man doing a trick on a bike. A person in the snow. A little girl in a red jacket is
front of three men. a ramp. field. dirt bike. standing in the snow.
NIC: A group of people are standing in A man is doing a trick on a Two dogs play in the grass. A man is riding a horse. A man on a dirt bike. A skateboarder does a trick on a ramp. A man on a snowy mountain. A little boy in a red jacket i1s in
front of a building. skateboard. the snow.
Groundtruth: A group of tourists stand around as A skateboarder in the air at abig  The three dogs ran in the yard. A blond cowboy is riding a A dirt biker turns across the dirt. A skateboarder on a ramp. A man crouched on a snowy A child dressed for the cold sits
a lady puts her hand near the mouth  outdoor ramp. bucking bronco at the rodeo. peak. in the snow.

of a statue.




