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ABSTRACT
This paper studies convolutional neural networks (CNN) to
learn unsupervised feature representations for 44 different
plant species, collected at the Royal Botanic Gardens, Kew,
England. To gain intuition on the chosen features from the
CNN model (opposed to a ’black box’ solution), a visualisa-
tion technique based on the deconvolutional networks (DN)
is utilized. It is found that venations of different order have
been chosen to uniquely represent each of the plant species.
Experimental results using these CNN features with different
classifiers show consistency and superiority compared to the
state-of-the art solutions which rely on hand-crafted features.

Index Terms— plant classification, deep learning, feature
visualisation

1. INTRODUCTION

Plants are the backbone of all life on earth providing us with
food and oxygen. A good understanding of plants is essen-
tial to help in identifying new or rare plant species in order to
improve the drug industry, balance the ecosystem as well as
the agricultural productivity and sustainability [1]. Amongst
all, botanists use variations on leaf characteristics as a com-
parative tool for their study on plants [1, 2]. This is because
leaf characteristics are available to be observed and examined
throughout the year in deciduous, annual plants or year-round
in evergreen perennials

In computer vision, despite many efforts [3–8] (i.e with
sophisticated computer vision algorithms) have been con-
ducted, plant identification is still considered a challenging
and unsolved problem. This is because a plant in nature has
very similar shape and colour representation as illustrated
in Fig. 1. Kumar et al. [3] proposed an automatic plant
species identification system namely Leafsnap. They identi-
fied plants based on curvature-based shape features of the leaf
by utilizing integral measure to compute functions of the cur-
vature at the boundary. Then, identification is done by nearest
neighbours (NN). Other solutions employed geometric [9],
multi-scale distance matrix, moment invariants [4], colour,
texture [5, 6] and venation features [7, 8] to identify a plant.

Fig. 1: Sample of the 44 plant species employed in this paper.
It can be noticed that all the plant species have almost similar
colour representation and shape.

Although successful, one must note that the performance of
these aforementioned solutions is highly dependent on the
chosen set of features which are task or dataset dependent.
That is, it may suffer from the dataset bias problem [10].

In this paper, we propose to employ deep learning in a
bottom-up and top-down manner for plant identification. In
the former, we choose to use a convolutional neural networks
(CNN) model to learn the leaf features as a means to perform
plant classification. In the latter, rather than using the CNN
as a black box mechanism, we employ deconvolutional net-
works (DN) to visualize the learned features. This is in order
to gain visual understanding on which features are important
to identify a leaf from different classes, thus avoiding the ne-
cessity of designing hand-crafted features. Empirically, our
method outperforms state-of-the-art approaches [3, 9, 11] us-
ing the features learned from CNN model in classifying 44
different plant species.

This paper presents two contributions. First, we propose
a CNN model to automatically learn the features represen-
tation for plant categories, replacing the need of designing
hand-crafted features as to previous approaches [3, 9, 12, 13].
Second, we identify and diagnose the feature representation
learnt by the CNN model through a visualisation strategy
based on the DN. This is to avoid the use of the CNN model
as a black box solution, and also provide an insight to re-
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Fig. 2: Architecture of our CNN model for plant identification.

Fig. 3: Our deep learning framework in a bottom-up and top-
down manner to study and understand plant identification.

searchers on how the algorithm "see" or "perceives" a leaf.
Finally, a new leaf dataset, named as MalayaKew (MK) Leaf
Dataset is also collected with full annotation.

The rest of the paper is organized as follows: Section 2
reviews the concept of deep learning, in particular our CNN
and DN model for plant identification. Section 3 presents our
findings and a comparison with conventional solutions. Fi-
nally, conclusions are drawn in Section 4.

2. PROPOSED APPROACH

In this section, we first explain how we employ the pre-trained
CNN model to perform plant identification. Then, we detail
how a DN model is utilised with our new visualisation strat-
egy, to understand how the CNN model work in identifying
different plant species. Fig. 3 depicts the overall framework
of our approach.

2.1. Convolutional Neural Network

The CNN model used in this paper is based on the model pro-
posed in [14] with ILSVRC2012 dataset used for pre-training.
Rather than training a new CNN architecture, we re-used the
pre-trained network due to a) recent work [15] reported that
features extracted from the activation of a CNN trained in
a fully supervised manner on large-scale object recognition
works can be re-purposed to a novel generic task; 2) our train-
ing set is not large as the ILSVRC2012 dataset. Indicated
in [16], the performance of the CNN model is highly depend-
ing on the quantity and the level of diversity of training set,
and finally c) training a deep model requires skill and experi-
ence. Also, it is time-consuming.

For our CNN model, we perform fine-tuning using a 44
classes leaf dataset collected at the Royal Botanic Gardens,
Kew, England. Thus, the final fully connected layer is set to
have 44 neurons replacing the original 1000 neurons. The
full model of our CNN architecture is depicted in Fig. 2. The
first convolutional layer filters the 227×227×3 input leaf im-
ages with 96 kernels of size 11×11×3 with stride of 4 pix-
els. Then, the second convolutional layer takes the pooled
feature maps from the first layer and convolved with 256 fil-
ters of size 5×5×48. Following this, the output is fed to the
third and later to the fourth convolutional layer. The third and
fourth convolutional layers which have 384 kernels of size
3×3×256 and 384 kernels of size 3×3×192 respectively per-
form only convolution without pooling. The fifth convolu-
tional layer has 256 kernels of size 3×3×192. After perform-
ing convolution and pooling in the fifth layer, the output is
fed into fully-connected layers which have 4096 neurons. For
the parameter setting, the learning rate multiplier of the filters
and biases are set to 10 and 20, respectively.



Fig. 4: Visualization (V1) strategy to understand how and
why our CNN works/fails. Best viewed in colour.

2.2. Deconvolutional Network

The CNN model learns and optimises the filters in each layer
through the back propagation mechanism. These learned fil-
ters extract important features that uniquely represent the in-
put leaf image. Therefore, in order to understand why and
how the CNN model operates (instead of treating it as a "black
box"), filter visualisation is required to observe the transfor-
mation of the features, as well as to understand the internal
operation and the characteristic of the CNN model. More-
over, we can identify the unique features on the leaf images
that are deemed important to characterize a plant from this
process. [17, 18] introduced multi-layered DN that enable us
to observe the transformation of the features by projecting the
feature maps back to the input pixel space. Specifically, the
feature maps from layer n are alternately deconvolved and un-
pooled continuously down to input pixel space. That is, given
the feature maps, Y (l−1)

i as:

Y
(l−1)
i =

m
(l)
1∑

j=1

(K
(i)
j,i )

T
∗ Y (l)

j (1)

where layer l be a deconvolutional layer and K are the filters.
To visualize our CNN model, we employ a strategy named

as V1 based on the DN approach [17,18]. The purpose of V1
is to examine the overall highest activation parts across all fea-
ture maps for that layer l. So that, through the reconstructed
image, we could observe the highly activated regions of the
leaf in that layer. In order to do that, for all the absolute ac-
tivations in that layer n, we consider only the first S largest
pixel value with the rest are set to zero and projected down to
pixel space to reconstruct an image as defined:
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Fig. 5: Failure analysis on our proposed CNN model in D1.

Fig. 6: Failure analysis on our proposed CNN model in D2.

where S = 1, 2, ....., size(Y
(l)
j ). With this, we could observe

the highly activated regions of the leaf in that layer. The visual
results of S = 1, S = 5 and S = ’All’ are illustrated in Fig. 4.

3. EXPERIMENTAL RESULTS

3.1. Data Preparation

A new leaf dataset, named as MalayaKew (MK) Leaf Dataset
which consists of 44 classes, collected at the Royal Botanic
Gardens, Kew, England are employed in the experiment.
Samples of the leaf dataset is illustrated in Fig. 1, and we
could see that this dataset is very challenging as leaves from
different classes have very similar appearance. A data (D1)
is prepared to compare the performance of the trained CNN.
That is, we use leaf images as a whole where in each leaf
image, foreground pixels are extracted using the HSV colour
space information. To enlarge the D1 dataset, we rotate the
each leaf images in 7 different orientations, e.g. 45◦, 90◦,
135◦, 180◦, 225◦, 270◦ and 315◦. We then randomly select
528 leaf images for testing and 2288 images for training.

3.2. Results and Failure Analysis - D1

In this section, we present a comparative performance eval-
uation of the CNN model on plant identification. From Ta-
ble 1, it is noticeable that using the features learnt from the
CNN model (98.1%) outperforms state-of-the-art solutions
[3,9,11] that employed carefully chosen hand-crafted features
even when different classifiers are used. We performed failure
analysis and observed that most of the misclassified leaves are
from Class 2(4 misclassified), follow by Class 23(3), Class 9
& 27(2 each), and Class 38(1). From our investigation as il-
lustrated in Fig. 5, the Q. robur f. purpurascens (i.e Class 2)



Fig. 7: Feature visualisation using DN. It shows that shape (feature) is chosen in D1. Best viewed in colour.

Fig. 8: Feature visualisation using DN. It shows that venation and the departure between different order venations (feature) are
chosen in D2. Best viewed in colour.

were misclassified as Q. acutissima (i.e Class 9) , Q. rubra
‘Aurea’ (i.e. Class 27) and Q. macranthera (Class 39), re-
spectively; have almost the same outline shape as to Class 2.
The rest of the misclassified testing images are also found to
be misled by the same reason.

In order to further understand how and why the CNN fails,
here we delve into the internal operation and behaviour of
the CNN model via V1 strategy. We evaluate the one largest
pixel value across the feature maps. Our observation from the
reconstructed images in Fig 7 shows that the highly activated
parts fall at the shape of the leaves. So, we deduce that leaf
shape is not a good choice to identify plants.

3.3. Results and Failure Analysis - D2

Here, we built a variant dataset (D2), where we manually crop
each leaf image in the D1 into patches within the area of the
leaf (so that no shape is included). This investigation is two-
fold. On one hand, we intend to know what is the precision
of the plant identification classifier when the leaf shape is ex-
cluded ? On the other hand, we would like to find out if plant
identification could be just done by patch of the leaf. Since

Table 1: Performance Comparison on the MK Leaf Dataset
with Different Classifiers. Note that, MLP = Multilayer Per-
ceptron, SVM = Support Vector Machine, and RBF = Radial
Basis Function.

Feature Classifier Accuracy (%)

From Deep CNN (D1) MLP 0.977
From Deep CNN (D1) SVM (linear) 0.981
From Deep CNN (D2) MLP 0.995
From Deep CNN (D2) SVM (linear) 0.993

LeafSnap [3] SVM (RBF) 0.420
LeafSnap [3] NN 0.589

HCF [9] SVM (RBF) 0.716
HCF-ScaleRobust [9] SVM (RBF) 0.665

Combine [9] Sum rule (SVM (linear)) 0.951
SIFT [11] SVM (linear) 0.588

the original images range from 3000 × 3000 to 500 × 500,
three different leave patch sizes (i.e 500 × 500, 400 × 400
and 256 × 256) are chosen. Similarly, we increase the diver-
sity of the leaf patches by rotating them it in the same manner
as to D1. We randomly select 8800 leaf patches for testing



and 34672 leaf patches for training.
In Table 1, we can see that the classification accuracy of

the CNN model, trained using D2 (99.6%), is higher than us-
ing D1 (97.7%). Again, we perform the visualisation via V1
strategy as depicted in Fig. 8 to understand why the CNN
trained with D2 has a better performance. From layer to layer,
we notice that the activation part falls on not only the pri-
mary venation but also on the secondary venation and the
departure between different order venations. Therefore, we
could deduce that venation of different orders are more ro-
bust features for plant identification. This also agrees with
some studies [19, 20] highlighting that quantitative leaf vena-
tion data have the potential to revolutionize the plant identi-
fication task. Existing work that had employed venation to
perform plant classification are [2, 8, 12, 21, 22]. However, as
opposed to these solutions, we automatically learn the vena-
tion of different orders, while they use a set of heuristic rules
that are hard to replicate.

We also analysed the drawbacks of our CNN model with
D2 and observe that most of the misclassified patches are
from Class 9(18 misclassified), follow by Class 2(13), Class
30(5), Class 28(3) and Class 1 , 31 & 42(1 each). The con-
tributing factor of the misclassification seems to be the condi-
tion of the leaves, where the samples are noticeable affected
by environmental factors such as wrinkled surface and insect
damages. Example of such conditions are shown in Fig. 6.

4. CONCLUSION

This paper studied a deep learning approach to learn discrim-
inative features from leaf images with classifiers for plant
identification. From the experimental results, we justified that
learning the features through CNN can provide better feature
representation for leaf images compared to hand-crafted fea-
tures. Moreover, we demonstrated that venation structure is
an important feature to identify different plant species with
performance of 99.6%, outperforming conventional solutions.
This is verified by analysing the internal operation and be-
haviour of the network through DN visualisation technique.
In future work, we will extend the work to recognize in the
wild.
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